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Since learning some concepts on duality in convex optimization back in 2019, I have been wanting to come

up with a canonical problem that demonstrates the usefulness of strong duality. In linear programming,

if the problem has few variables and many constraints, solving the dual can be advantageous in terms of

efficiency, but I was looking for an non-linear example where duality can provide insights into the problem.

Below is described such a problem where the initial constraint is difficult to optimize around, and computing

the dual yields a straightforward convex optimization problem.

1 Notation and Definitions

The problem revolves around probability distributions over a discrete variable x, which we denote with

P (x) and Q(x). The expected value of a function z = f(x) is given by E[z] =
∑

x z · P (x). The Pearson

χ2-divergence Dχ2(Q ∥ P ) is a function of two distributions indicating a level of similarity between them,

and it is given by:

Dχ2(Q ∥ P ) =
∑
x

P (x)

(
Q(x)

P (x)
− 1

)2

.

Additionally, this satisfies that Dχ2(Q ∥ P ) ≥ 0. and Dχ2(Q ∥ P ) = 0 if and only if Q(x) = P (x) for all x.

2 Problem Statement

Consider a fair 6-sided die, and let P (x) represent the uniform distribution of the outcome of the die, x.

Clearly E[x] = 3.5. Now suppose we want to create an unfair die with a larger expected value, without

modifying the distribution too much. To this end, we wish to solve the following:

max
Q

EQ[x]

s.t. Dχ2(Q ∥ P ) ≤ r
(1)

where Q is any distribution over the die. In other words, find the distribution in a χ2-ball of radius r centered

around P that maximizes the expected value of the die.

1



3 Background

3.1 Strong Duality

The main idea behind duality is that for every maximization problem (which we refer to as the primal), there

is a closely related minimization problem (referred to as the dual). In the general case of concave/convex

optimization problems, the primal is given by:

max
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , n

hj(x) = 0, j = 1, . . . ,m

(2)

where f, gi, hi are all concave functions. The Lagrangian function is as follows:

L(x, λ, η) := f(x) +

n∑
i=1

λigi(x) +

m∑
j=1

ηjhj(x) (3)

where λi and ηj are the introduced dual variables (very much related to Lagrange multipliers, though in this

case we can have inequality constraints). The dual objective function is then given by:

g(λ, η) := inf
x

L(x, λ, η) (4)

which is not to be confused with the gi constraints. In this case where we started with maximizing a concave

function, g(λ, η) is convex. So the dual problem in full is:

min
λ,η

g(λ, η)

s.t. λi ≥ 0, i = 1, . . . , n

ηj ∈ R, j = 1, . . . ,m

(5)

It is always the case that the maximizer x∗ of the primal and the minimizers λ∗, η∗ of the dual will satisfy

a condition known as weak duality :

f(x∗) ≤ g(λ∗, η∗) (6)

however, if certain regularity conditions are met, then the solutions will match, which is known as strong

duality :

f(x∗) = g(λ∗, η∗) (7)

Strong duality is also equivalent to asking whether or not a saddle point of L(x, λ, η) exists that would

simultaneously solve the maximization and minimization problems.

The regularity conditions for strong duality are commonly called constraint qualifications. An example of

such a constraint qualification is Slater’s condition which for convex optimization problems says that the

feasible region has a non-empty interior. In other words, such a condition being met implies that strong

duality holds. This is also closely related to what are known as the Karush-Kuhn-Tucker (KKT) conditions.

Note that the original problem we stated does satisfy the conditions for strong duality, if r > 0.
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3.2 Fenchel Conjugate

The Fenchel conjugate (also known as the convex conjugate) is also closely related to duality. For simplicity

we will only consider functions of a single variable since it is all we need to solve our original problem, but

this can be generalized to functions on any real topological vector space.

Let f : R → R. The Fenchel conjugate is defined by:

f∗(y) := sup{yx− f(x)} (8)

It can be shown that f∗ must be convex and that f∗∗ ≤ f . In fact, the conditions for strong duality are

essentially equivalent to the conditions for f∗∗ = f (see the Fenchel-Moreau theorem). As an example,

equality holds if f is continuous and convex.

The geometric interpretation behind this concept is based around the fact that one can encode a function

as the set of hyperplanes that support the convex hull of the epigraph of the function (where the epigraph

is the set of points above the function). In fact, this is simply due to the fact that any convex set can

be reconstructed from the set of hyperplanes supporting it, which is known as the supporting hyperplane

theorem. It is typically proven using the hyperplane separation theorem (or Hahn-Banach theorem).

In one dimension, if f is convex, the definition simplifies down to asking, “For a given slope of y, how far

do you have to translate the line yx so that it is a tangent line of f?” The value of such a perturbation is

f∗(y). If f is not convex, then yx may not be translated to be tangent to f , but rather the convex hull of

the epigraph of f .

Example 1. As an example, take f = (x − 1)2, which is convex. To find f∗, we can compute the value of

x which achieves the sup:

∂

∂x

[
yx− (x− 1)2

]
= y − 2(x− 1)

0 = y − 2x+ 2

x =
1

2
y + 1

then plug it back into the original definition:

f∗(y) = sup{yx− f(x)}

= y

(
1

2
y + 1

)
−
(
1

2
y + 1− 1

)2

=
1

4
y2 + y

Therefore the Fenchel conjugate of (x− 1)2 is 1
4y

2 + y.

In addition, one can see that when we set y = 1, we have that yx− f∗(y) = x− 5
4 is a tangent line of f with

a slope of y = 1.

Following the same procedure, one can also show that f∗∗(x) = (x− 1)2.

It is also fairly straightforward to show that for any scalar c, we have (cf)∗(y) = c · f∗(y/c).
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3.3 f-Divergences

The χ2-divergence belongs to a larger class of divergences known as f -divergences. These are divergences of

the form:

Df (Q ∥ P ) :=
∑
x

P (x)f

(
Q(x)

P (x)

)
(9)

where f is a convex function, f(1) = 0, f(x) is finite on x > 0, and f(0) = limx→0+ f(x).

Some examples from this class include:

χ2-divergence: f(x) = (x− 1)2

KL-divergence: f(x) = x lnx

reverse KL-divergence: f(x) = − lnx

Total variation distance: f(x) =
1

2
|x− 1|

squared Hellinger distance: f(x) = (
√
x− 1)2

(10)

This class satisfies many nice properties. For example, if g(x) = f(x) + c(x − 1) for some c ∈ R, then
Dg = Df . That is, f -divergences are not quite uniquely defined by their generating function f . Therefore,

the χ2-divergence would be equivalently defined using f(x) = x2 − 1 or f(x) = x2 − x.

It is clear that in general divergences are not symmetric, that is, Df (Q ∥ P ) ̸= Df (P ∥ Q). However, if

we let g(x) = xf(1/x) for some generating function f , then we get that Df (Q ∥ P ) = Dg(P ∥ Q). Such a

transformation of f is called a convex inversion.

4 Problem Solution

Let f(x) = (x− 1)2, so that Dχ2 = Df . The primal problem (1) restated is:

max
Q

∑
x

xQ(x)

s.t. Df (Q ∥ P ) ≤ r∑
x

Q(x) = 1

(11)

The Lagrangian dual function is given by:

L(Q,λ, η) =

(∑
x

xQ(x)

)
+ λ

(
r −

∑
x

P (x)f

(
Q(x)

P (x)

))
+ η

(
1−

∑
x

Q(x)

)
(12)

So if we set g(λ, η) = maxQ L(Q,λ, η), then the dual is:

min
λ,η

g(λ, η)

s.t. λ ≥ 0

η ∈ R

(13)
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Let us investigate the dual problem in further detail. We have that:

g(λ, η) = η + λr +max
Q

∑
x

(
xQ(x)− ηQ(x)− λP (x)f

(
Q(x)

P (x)

))
= η + λr +

∑
x

max
Q

(
xQ(x)− ηQ(x)− λP (x)f

(
Q(x)

P (x)

))
= η + λr +

∑
x

P (x)max
t≥0

{t(x− η)− λf(t)}, t := Q(x)/P (x)

= η + λr +
∑
x

P (x)(λf)∗(x− η)

= η + λr +
∑
x

P (x)λf∗
(
x− η

λ

)

Since strong duality holds for this problem, we have proven that:

max
Q

{EQ[x] : Df (Q ∥ P ) ≤ r} = min
λ≥0,η

{
EP

[
λf∗

(
x− η

λ

)]
+ λr + η

}
(14)

We can actually simplify this even further by eliminating λ. Note that f∗(y) = 1
4y

2 + y = ( 12y + 1)2 − 1.

Then:

λEP

[
f∗
(
x− η

λ

)]
+ λr + η = λEP

[(
1

2

(
x− η

λ

)
+ 1

)2

− 1

]
+ λr + η

= λEP

[
1

4λ2
(x− η)2 +

1

λ
(x− η) + 1

]
+ λ(r − 1) + η

=
1

4λ
EP

[
(x− η)2 + 4λ(x− η) + 1

]
+ λ(r − 1) + η

=
1

4λ
EP

[
(x− η + 2λ)2

]
+ λ(r − 1) + η

=
1

4λ
EP

[
(x− η̃)2

]
+ λ(r + 1) + η̃

Where η̃ := η − 2λ, since η is unconstrained. Then, we can set the partial derivative with respect to λ to 0

to eliminate λ from g(λ, η):
∂

∂λ
= − 1

4λ2
EP

[
(x− η̃)2

]
+ (r + 1)

0 = − 1

4λ2
EP

[
(x− η̃)2

]
+ (r + 1)

λ2 =
1

4(r + 1)
EP

[
(x− η̃)2

]
λ =

1

2

(
1

r + 1
EP

[
(x− η̃)2+

])1/2

where (x − η̃)+ := max(0, x − η̃). For cleanliness, let C := EP

[
(x− η̃)2+

]
. Plugging back into the original
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definition we get:

1

4λ
EP

[
(x− η̃)2

]
+ λ(r + 1) + η̃ =

1

2

(
1

r + 1
C

)−1/2

· C +
1

2

(
1

r + 1
C

)1/2

(r + 1) + η̃

=
1

2
((r + 1)C)

1/2
+

1

2
((r + 1)C)

1/2
+ η̃

=

(
1

r + 1
C

)1/2

+ η̃

Summarizing these results, we have finally obtained:

max
Q

{EQ[x] : Df (Q ∥ P ) ≤ r} = min
η̃∈R

{(
1

r + 1
EP

[
(x− η̃)2+

])1/2

+ η̃

}
(15)

The right-hand side of this equation is a single-variable convex function of η̃, for all r > 0.

Interestingly, we can interpret the dual as meaning all sides of the die less than η̃ are given no weight, and

the remaining sides are reweighted according to the squared term (x− η̃)2.

Example 2. Take r = 1 for example. Below is a plot of the right hand side from (15)

The minimum is approximately 5.145, so this is approximately the largest value of EQ[x] one could achieve

by varying from the uniform distribution by at most r = 1 in terms of the χ2-divergence. In addition, note

the elbow at (6, 6), which is in fact the maximum optimal η̃ and EQ[x], when r is sufficiently large.
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