Partitions of Fibonacci numbers into distinct Fibonacci parts

Jason d'Eon

December 6, 2022

Below is described a problem revolving around some results I came across on Fibonacci numbers. Included are relevant theorems and their proofs, as well as an implemented solution.

1 Reference

Robbins, Neville. "Fibonacci Partitions." The Fibonacci Quarterly, Vol. 34.4 (1996): pp. 306-313.

2 Problem Statement

We let F_{n} be the nth Fibonacci number, where $F_{1}=1$ and $F_{2}=1$. Define $p\left(F_{n}\right)$ to be the number of ways to partition F_{n} into distinct Fibonacci parts, that is, where the summands are Fibonacci numbers. For example, $p\left(F_{2}\right)=1$ and $p\left(F_{10}\right)=5$.

Further we define

$$
S(n)=\sum_{k=2}^{n} p\left(F_{k}\right)
$$

You are given $S(123)=3782$ and $S(12345)=38099756$.
Find $S(123456789)$.

3 Solution

First, we obtain a useful lemma.
Lemma 1. $\sum_{k=2}^{n} F_{k}=F_{n+2}-2$.

Proof. We proceed by induction on n. Note that the statement holds for $n=2$, since $F_{2}=1=3-2=F_{4}-2$. Now suppose the statement holds for some m, that is $\sum_{k=2}^{m} F_{k}=F_{m+2}-2$. Then by the definition of Fibonacci numbers, $\sum_{k=2}^{m+1} F_{k}=F_{m+1}+F_{m+2}-2=F_{m+3}-2$. Therefore the statement holds for $m+1$.

The problem is made trivial once the following (slightly surprising) theorem is proved.
Theorem 2. $p\left(F_{n}\right)=\lfloor n / 2\rfloor$ when $n \geq 2$.

Proof. We apply induction once more. Trivially, $p\left(F_{2}\right)=1=\lfloor 2 / 2\rfloor$ and $p\left(F_{3}\right)=1=\lfloor 3 / 2\rfloor$. Now suppose $p\left(F_{m}\right)=\lfloor m / 2\rfloor$ for some $m \geq 4$. By Lemma 1, we know that the sum of the distinct F_{k} up to $k=m-2$ would only be $F_{m}-2$, so a nontrivial partition of F_{m} must contain F_{m-1}. Since $F_{m}=F_{m-1}+F_{m-2}$, we see that the number of nontrivial partitions of F_{m} must equal to that of the number of partitions of F_{m-2}. Then taking into account the trivial partition, $p\left(F_{m}\right)=1+p\left(F_{m-2}\right)=1+\lfloor(m-2) / 2\rfloor=\lfloor m / 2\rfloor$.

4 Code (Python)

With the above results, the code is very straightforward.

```
# pe_fibo.py
from functools import cache
import time
@cache
def fibo(n):
    if n==1 or n==2: return 1
    return fibo(n-1) + fibo(n-2)
def p_of_f(k):
    return k//2
def s(n):
    return sum([p_of_f(k) for k in range(2,n+1)])
t0 = time.time()
print(s(123))
print(s(12345))
print(s(123456789))
print("Execution time: %.4fs" % (time.time() - t0))
```

Output:

```
$ python pe_fibo.py
3782
38099756
3810394687547630
Execution time: 15.6884s
```


5 Notes

Any method that iterates all the partitions would be expected to fail due to size of the solution. However, this problem is not very difficult: even if the solver cannot produce the above result, some brute-force experimentation may lead them to guess the pattern of $p\left(F_{n}\right),\{1,1,2,2,3,3, \ldots\}$. Nevertheless, I think it is a cute result that many solvers would be inspired to look into further upon solving.

