Partitions of Fibonacci numbers into distinct Fibonacci parts

Jason d’Eon

December 6, 2022

Below is described a problem revolving around some results I came across on Fibonacci numbers. Included

are relevant theorems and their proofs, as well as an implemented solution.

1 Reference

Robbins, Neville. “Fibonacci Partitions.” The Fibonacci Quarterly, Vol. 84.4 (1996): pp. 306-313.

2 Problem Statement

We let F,, be the nth Fibonacci number, where F; = 1 and F; = 1. Define p(F,) to be the number of
ways to partition F;, into distinct Fibonacci parts, that is, where the summands are Fibonacci numbers. For

example, p(F3) =1 and p(Fyp) = 5.

Further we define

You are given S(123) = 3782 and S(12345) = 38099 756.

Find S(123456 789).

3 Solution

First, we obtain a useful lemma.
Lemma 1. >} _, F, = F,40 — 2.
Proof. We proceed by induction on n. Note that the statement holds for n = 2, since F, =1 =3-2= F;—2.

Now suppose the statement holds for some m, that is Z?:g Fy, = F42 — 2. Then by the definition of
Fibonacci numbers, Zl:; Fy, = Fipp1+ Foppo —2 = Fy 13— 2. Therefore the statement holds for m+1. O

The problem is made trivial once the following (slightly surprising) theorem is proved.

Theorem 2. p(F,) = |n/2] when n > 2.

Proof. We apply induction once more. Trivially, p(F») = 1 = |2/2] and p(F5) = 1 = |3/2]. Now suppose
p(Fy,) = |m/2] for some m > 4. By Lemma 1, we know that the sum of the distinct F}, up to k = m — 2
would only be F),, — 2, so a nontrivial partition of F,, must contain F,,_;. Since F,, = F,,_1 + Fy,_2, we
see that the number of nontrivial partitions of F},, must equal to that of the number of partitions of F,,_».
Then taking into account the trivial partition, p(F,) = 1+ p(F—2) =14 [(m —2)/2] = [m/2]. O

4 Code (Python)

With the above results, the code is very straightforward.

pe_fibo.py
from functools import cache

import time

Q@cache
def fibo(n):
if n==1 or n==2: return 1

return fibo(n-1) + fibo(n-2)

def p_of_f(k):
return k//2

def s(n):
return sum([p_of_£f(k) for k in range(2,n+1)])

t0 = time.time()

print(s(123))

print(s(12345))

print (s(123456789))

print ("Execution time: %.4fs" % (time.time() - t0))

Output:

$ python pe_fibo.py
3782

38099756
3810394687547630
Execution time: 15.6884s

5 Notes

Any method that iterates all the partitions would be expected to fail due to size of the solution. However,
this problem is not very difficult: even if the solver cannot produce the above result, some brute-force
experimentation may lead them to guess the pattern of p(F,), {1,1,2,2,3,3,...}. Nevertheless, I think it

is a cute result that many solvers would be inspired to look into further upon solving.

