
Partitions of Fibonacci numbers into distinct Fibonacci parts

Jason d’Eon

December 6, 2022

Below is described a problem revolving around some results I came across on Fibonacci numbers. Included

are relevant theorems and their proofs, as well as an implemented solution.

1 Reference

Robbins, Neville. “Fibonacci Partitions.” The Fibonacci Quarterly, Vol. 34.4 (1996): pp. 306–313.

2 Problem Statement

We let Fn be the nth Fibonacci number, where F1 = 1 and F2 = 1. Define p(Fn) to be the number of

ways to partition Fn into distinct Fibonacci parts, that is, where the summands are Fibonacci numbers. For

example, p(F2) = 1 and p(F10) = 5.

Further we define

S(n) =

n∑
k=2

p(Fk)

You are given S(123) = 3782 and S(12 345) = 38 099 756.

Find S(123 456 789).

3 Solution

First, we obtain a useful lemma.

Lemma 1.
∑n

k=2 Fk = Fn+2 − 2.

Proof. We proceed by induction on n. Note that the statement holds for n = 2, since F2 = 1 = 3−2 = F4−2.

Now suppose the statement holds for some m, that is
∑m

k=2 Fk = Fm+2 − 2. Then by the definition of

Fibonacci numbers,
∑m+1

k=2 Fk = Fm+1+Fm+2−2 = Fm+3−2. Therefore the statement holds for m+1.

The problem is made trivial once the following (slightly surprising) theorem is proved.

Theorem 2. p(Fn) = ⌊n/2⌋ when n ≥ 2.

1

Proof. We apply induction once more. Trivially, p(F2) = 1 = ⌊2/2⌋ and p(F3) = 1 = ⌊3/2⌋. Now suppose

p(Fm) = ⌊m/2⌋ for some m ≥ 4. By Lemma 1, we know that the sum of the distinct Fk up to k = m − 2

would only be Fm − 2, so a nontrivial partition of Fm must contain Fm−1. Since Fm = Fm−1 + Fm−2, we

see that the number of nontrivial partitions of Fm must equal to that of the number of partitions of Fm−2.

Then taking into account the trivial partition, p(Fm) = 1 + p(Fm−2) = 1 + ⌊(m− 2)/2⌋ = ⌊m/2⌋.

4 Code (Python)

With the above results, the code is very straightforward.

pe_fibo.py

from functools import cache

import time

@cache

def fibo(n):

if n==1 or n==2: return 1

return fibo(n-1) + fibo(n-2)

def p_of_f(k):

return k//2

def s(n):

return sum([p_of_f(k) for k in range(2,n+1)])

t0 = time.time()

print(s(123))

print(s(12345))

print(s(123456789))

print("Execution time: %.4fs" % (time.time() - t0))

Output:

$ python pe_fibo.py

3782

38099756

3810394687547630

Execution time: 15.6884s

5 Notes

Any method that iterates all the partitions would be expected to fail due to size of the solution. However,

this problem is not very difficult: even if the solver cannot produce the above result, some brute-force

experimentation may lead them to guess the pattern of p(Fn), {1, 1, 2, 2, 3, 3, . . . }. Nevertheless, I think it

is a cute result that many solvers would be inspired to look into further upon solving.

2

