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Abstract

Information geometry is the application of differential geometry to the study of statistical

objects. In particular, it gives ways of predicting the information change in a parametric

probability distribution when the parameters have been modified by a small amount.

This is relevant to neural networks, where these techniques can be used to predict how

the output of the model will change as the parameters are updated. The predictions can

be used to analyze and improve the optimization process in supervised learning. In this

paper, we present an overview of the theory of information geometry and highlight some

key applications to machine learning.
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1. INTRODUCTION

1 Introduction

Information geometry sits at the intersection of differential geometry, statistics, and proba-

bility theory. Exponential families of probability distributions, such as normal distributions,

come with standard parameterizations. Therefore, it is natural to interpret a space of proba-

bility distributions as a Riemannian manifold, where the coordinates are given by the param-

eters of the distribution family and the metric is induced by a measurement of information

discrepancy. This gives a way of imposing a distance between probability distributions. The

first use of differential geometry in statistics is generally attributed to Harold Hotelling, in

the late twenties [43]. C. R. Rao is well-known for his research of Riemannian metrics on

spaces of probability distributions. In particular, he studied the Fisher information matrix

and interpreted it as a metric [34]. Claude Shannon introduced what is now known as Shan-

non Entropy, which is a way of describing the amount of information stored in a distribution

[39]. Solomon Kullback and Richard Leibler independently introduced a different way of

measuring the difference between distributions, which they called the KL-divergence [24]. In

this paper, we describe these concepts at an introductory level and show how they relate to

each other.

We now summarize the contents of this paper. Chapter 2 is an overview of Riemannian

geometry. Basic knowledge of manifolds and tangent spaces is assumed. The results from

this chapter are taken from Lee’s Riemannian Manifolds: an Introduction to Curvature [27]

and Tu’s Differential Geometry: Connections, Curvature, and Characteristic Classes [45].

The exception is the section on dual affine connections, since this topic is not covered in

these references. For this chapter we referred to [4] and [29].

Chapter 3 discusses how parameter spaces of probability distributions can be interpreted

as Riemannian manifolds. In this context, they are called statistical manifolds. This theory

was the primary topic of Shun-ichi Amari’s research [1, 4]. He also demonstrated appli-

cations of information geometry to machine learning [5, 4] and blind signal separation [5,

6]. He described two important classes of divergences on parameter spaces, which are the

f -divergence and Bregman divergence classes. The f -divergences satisfy information mono-

tonicity and they induce a Riemannian divergence given by the Fisher information matrix. It

follows that this is the only Riemannian metric on these parameter spaces which is invariant

under transformations of the random variable. Bregman divergences are in a one-to-one cor-

respondence with dually flat structures on the parameter space. That is, they induce a pair

of flat, dual affine connections on the parameter space. Amari also showed that a canonical

divergence can be derived from a dually flat structure, which gives a Bregman divergence.
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2. RIEMANNIAN GEOMETRY

Chapter 4 shows examples of how the previous topics can be used to improve the opti-

mization of neural networks. The optimization algorithm typically used in machine learning

is stochastic gradient descent. Amari introduced the so-called natural gradient, mentioned

in [5], which is meant to better capture the direction of steepest descent in a parameter

space of probability distributions, compared to the standard gradient. In [7], it was shown

that even when gradient descent is used, one can compute the expected change in output

with respect to a change in the parameters by leveraging the Fisher information matrix. We

also show that momentum-based gradient descent algorithms can be extended to a Rieman-

nian setting. Finally, we mention the drawbacks of these techniques, and why they are not

widespread.

2 Riemannian Geometry

2.1 Riemannian Manifolds

Manifolds are a way of generalizing Euclidean space. The most basic definition of a manifold

is not very restrictive, so it does not necessarily inherit many properties of Euclidean spaces.

For example, in Rn, we have a notion of length of a vector, as well as angles between two

vectors, both of which can be encapsulated by an inner product. Riemannian manifolds are

generalizations of Rn that inherit this concept by equipping each tangent space with an inner

product. This feature is captured by the Riemannian metric tensor.

Definition 2.1. A Riemannian metric tensor on a smooth manifold M is a symmetric

2-tensor field on M that is positive-definite for all p ∈M .

In its coordinate-free form, we typically denote a Riemannian metric by g, and the tensor

at a given point by gp. Since gp(·, ·) satisfies the properties of an inner product on TpM , we

also denote it by 〈·, ·〉g. If M is an n-dimensional smooth manifold and x = (x1, ..., xn) are

local coordinates on M then g can be written in terms of the basis {dx1|p, ..., dxn|p} of T ∗pM :

gp =
∑
i

∑
j

gijdx
i|p ⊗ dxj|p

where G = (gij) is a symmetric, positive definite matrix.

Definition 2.2. A Riemannian manifold, denoted by (M, g), is a smooth manifold M

paired with a Riemannian metric g.

The inner product on TpM induced by g can be written in terms of the matrix G. If
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2. RIEMANNIAN GEOMETRY

{ ∂
∂x1
|p, ..., ∂

∂xn
|p} is a local basis of TpM , then tangent vectors v, w ∈ TpM can be written as

linear combinations of the ∂
∂xi

, and the inner product on TpM is:

〈v, w〉g = vTGw,

the length of v is given by:

‖v‖g =
√
〈v, v〉g,

and if v and w are non-zero, the angle between v and w can be computed by the formula:

cos θ =
〈v, w〉g
‖v‖g · ‖w‖g

.

Example 2.3. Rn can be equipped with the Euclidean metric. In terms of the standard

coordinate functions on Rn, xi : Rn → R, where xi(ξ1, ..., ξn) = ξi, this is written as:

gij = δij.

In other words, the matrix G = (gij) is the identity matrix, for every point p ∈ Rn.

Example 2.4. Let fij be any smooth bounded functions on Rn, for i, j ∈ {1, ..., n}, such

that fij = fji. Then if C > 0 is sufficiently large, the metric on Rn given by:

gij = Cδij + fij.

is a Riemannian metric. By construction, gij = gji. If we let G = (gij), p ∈ Rn, and

(ξ1, ..., ξn)T ∈ TpRn then by expanding:

(ξ1, ..., ξn)G(ξ1, ..., ξn)T ,

we get:

C

(∑
i

ξ2i

)
+
∑
i,j

fij(p)ξiξj.

By boundedness, there exists C > 0 such that if (ξ1, ..., ξn)T is non-zero:

C >
−
∑

i,j fij(p)ξiξj∑
i ξ

2
i

,

for all p ∈ Rn.
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2. RIEMANNIAN GEOMETRY

2.2 Affine Connections

The directional derivative in Rn allows us to define how components of a vector field change

in a particular direction. We denote this operator by D, which takes in two vector fields

X, Y ∈ X(Rn) and returns a single vector field DXY = D(X, Y ), which captures the rate of

change of each component of Y in the direction X(p) for all p ∈ Rn. This is defined by the

limit:

(DXY )(p) = lim
h→0

Y (p+ hX(p))− Y (p)

h
.

There are two notable properties of the operator D:

1. C∞(Rn)-linearity in the first component: DfXY = fDXY ;

2. Leibniz Rule: DX(fY ) = (Xf)Y + fDXY .

There is no obvious way to directly extend the definition of the directional derivative of

vector fields to manifolds. The addition of a vector to a point, p + hX(p), has no defined

meaning, and the subtraction of two tangent vectors in different tangent spaces is also not

defined. To solve this issue, we instead define the operator abstractly, so that it already comes

with the properties we want. It is not obvious that every Riemannian manifold even admits

an affine connection, but this turns out to be the case, as we will see later in this section.

On the other hand, a Riemannian manifold generally admits many affine connections.

Definition 2.5. An affine connection on a manifold M is an R-bilinear operator:

∇ : X(M)× X(M)→ X(M)

that satisfies the following two properties. Here ∇XY := ∇(X, Y ):

1. ∇fXY = f∇XY ;

2. ∇X(fY ) = (Xf)Y + f∇XY .

It is worth pointing out that the choice of Riemannian metric on a manifold has no impact

on the existence of affine connections, however, we will see later (Section 2.6) that certain

connections can exist that interact with the metric in a desirable way.

If we fix the first component of ∇ to be X ∈ X(M), and think of ∇ as having a single

input, the affine connection is referred to as the covariant derivative:

∇X : X(M)→ X(M).
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2. RIEMANNIAN GEOMETRY

Example 2.6. The directional derivative on Rn is an example of an affine connection.

Let M ⊂ Rn be a embedded submanifold, and let Y ∈ X(M). Because of the embedding,

for each p ∈ M , we can think of Yp as lying in TpM or in TpRn. Therefore, we can write Y

in terms of the standard coordinates (xi) in Rn:

Y =
∑
i

Y j(p)∂i|p.

Where ∂i denotes ∂
∂xi

. Then if Xp ∈ TpM , we can take the directional derivative along

direction Xp by computing:

DXpY =
∑
i

Xp(Y
i(p))∂i|p.

The resulting vector may not be tangent to M . So we must project the tangent vector DXpY

from TpRn to TpM . In this sense, M inherits an affine connection ∇T from the directional

derivative D on Rn by setting:

(∇T
XY )p := π((DXY )p),

where π is the orthogonal projection from TpRn → TpM . Since the Nash embedding theorem

guarantees that every manifold can be isometrically embedded in Rn for some n, this means

that every Riemannian manifold admits at least one connection.

Theorem 2.7. ∇T defines an affine connection.

Proof. Since π is linear, then ∇T will be R-linear in each component, and C∞(M)-linear in

the first component. Now let f ∈ C∞(M), and X, Y ∈ X(M). Note that:

∇T
X(fY ) = π(DX(fY ))

= π((Xf)Y + fDXY )

= (Xf)π(Y ) + fπ(DXY )

= (Xf)Y + f∇T
XY.

Example 2.8. Consider S1 ⊂ R2. Define the following vector field on R2:

X = y∂x − x∂y

6



2. RIEMANNIAN GEOMETRY
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Figure 1: A visualization of the flow of the vector field X = y∂x − x∂y and S1.

We can also think of this as a vector field on S1, since for any point p on the unit circle,

the vector X(p) is tangent to the unit circle, and therefore can be thought of as a tangent

vector of S1. Let ∇T be the affine connection on S1, inherited from the directional derivative

on R2, given by the orthogonal projection. We will compute ∇T
XX. The integral curve of X

that coincides with the unit circle is:

γ(t) = (sin t, cos t).

In other words:

X(γ(t)) = γ′(t) = (cos t,− sin t).

Then the directional derivative at p = (p1, p2)
T gives:

(DXX)(p) = lim
h→0

1

h

[
X

((
p1

p2

)
+ hX

(
p1

p2

))
−X

(
p1

p2

)]

= lim
h→0

1

h

[
X

(
p1 + hp2

p2 − hp1

)
−

(
p2

−p1

)]

= lim
h→0

1

h

[(
p2 − hp1
−p1 − hp2

)
−

(
p2

−p1

)]

= lim
h→0

1

h

[(
−hp1
−hp2

)]

=

(
−p1
−p2

)
,

7



2. RIEMANNIAN GEOMETRY

meaning that for p = γ(t):

(DXX)(γ(t)) = γ′′(t) = (− sin t,− cos t).

However, note that γ′(t) · γ′′(t) = 0. So ∇T
XX = 0.

2.3 Christoffel Symbols

Let (U,ϕ = (x1, ..., xn)) be a local chart on M , and for p ∈ M , let {∂1 = ∂
∂x1
, ..., ∂n = ∂

∂xn
}

be the basis for TpM . To define an affine connection ∇ on M , at least locally on U , it is

sufficient to define each of the n components of (∇∂i∂j) as smooth functions on U . That is,

for each i, j, k, we have a smooth function Γkij := (∇∂i∂j)
k. The properties of the connection

will force how (∇XY )p will be evaluated for any arbitrary X, Y ∈ X(M) and p ∈ U . Consider

Y in terms of the given basis of TpM :

Y (p) =
∑
j

Y j(p)∂j|p.

Then we can compute ∇∂iY in terms of ∇∂i∂j by the following:

∇∂iY = ∇∂i

(∑
j

Y j∂j

)
=
∑
j

∇∂i(Y
j∂j)

=
∑
j

[
∂i(Y

j) · ∂j + Y j · ∇∂i∂j
]
.

And we can also compute ∇XY in terms of ∇∂iY by:

∇XY =
∑
j

Xj∇∂jY .

Definition 2.9. The smooth functions Γkij := (∇∂i∂j)
k are referred to as the Christoffel

symbols of the affine connection ∇.

Example 2.10. On Rn, the Christoffel symbols of the directional derivative are Γkij(p) = 0

for all p ∈ Rn, since D∂i∂j = 0 for all i, j ∈ {1, ..., n}.

Example 2.11. Let M = R2 and a, b ∈ R. Define ∇ by setting for all p:

(∇∂x∂x)p =

(
a

b

)
,

8



2. RIEMANNIAN GEOMETRY

and letting Γkij(p) = 0 otherwise. Suppose γ : R→ R2 is defined by:

γ(t) =

(
t

0

)
,

which is simply the constant-speed curve along the x-axis in the positive direction. If we

were working with the directional derivative, then clearly:

Dγ′(t)γ
′(t) = D∂x|γ(t)∂x|γ(t) = 0.

However, with our affine connection ∇:

∇γ′(t)γ
′(t) = ∇∂x|γ(t)∂x|γ(t) =

(
a

b

)
.

So the acceleration of the curve can be made to change with respect to t, and these values

can be modified with a lot of freedom. This also means the acceleration of a curve depends

on an affine connection, whereas velocity of a curve does not.

2.4 Geodesics

Affine connections allow us to generalize the notion of a straight line. In Rn, this can be

represented linearly in terms of a single parameter t:

c(t) = vt+ p,

for p, v ∈ Rn.

Now consider a curve γ : [a, b] → M . On a general manifold, the velocity of a curve

γ′(t) is a vector that lies in the tangent space Tγ(t)M . Similarly to how affine connections

generalize the directional derivative, we can generalize differentiating a vector field along a

curve.

Theorem 2.12. Let γ : [a, b] → M be a curve on a manifold M with affine connection ∇.

We will use X(γ) to denote vector fields in X(M) that are restricted to points on γ(t). There

exists a unique map:
D

dt
: X(γ)→ X(γ),

such that for all V ∈ X(γ) and all C∞ functions f on [a, b]:

1. D(αV+βW )
dt

= αDV
dt

+ βDW
dt

.

9



2. RIEMANNIAN GEOMETRY

2. D(fV )
dt

= df
dt
V + f DV

dt
.

3. If Ṽ ∈ X(M) is such that, for all t, V (t) = Ṽ (γ(t)), then DV
dt

(t) = ∇γ′(t)Ṽ for all t.

Definition 2.13. The map D
dt

given from the above theorem is called the covariant deriva-

tive along a curve.

We will postulate that γ is “straight” if the velocity of γ(t) does not change as we move

along the curve. This brings us to the definition of a geodesic:

Definition 2.14. Let γ : [a, b]→M be a curve on a manifold M with affine connection ∇.

Then γ is a geodesic if Dγ′(t)
dt

= 0 for all t.

Example 2.15. When M = Rn, g is the Euclidean metric, and ∇ is the directional deriva-

tive, then ∇γ′(t)γ
′(t) = γ′′(t). Therefore, γ(t) being a geodesic is equivalent to saying the

acceleration of γ(t) is 0. So γ(t) is a geodesic if and only if γ(t) = vt+ p for v, p ∈ Rn.

Example 2.16. Let M = S1, embedded as the unit circle in R2, and ∇T be the affine con-

nection on S1, inherited from the directional derivative on R2. As an embedded submanifold,

S1 can also inherit the Euclidean metric g from Rn, which is simply the restriction to vectors

that are tangent to S1. As we will see in a later section (Section 2.6) affine connections can

satisfy a certain kind of compatibility with the metric. In Rn we have that:

d

dt
〈γ′(t), γ′(t)〉g = 2 〈γ′′(t), γ′(t)〉g .

(See also Theorem 2.26). Since ∇T is inherited from the directional derivative, Dγ′(t)
dt

is the

tangential component of γ′′(t). It follows easily from the above equation that if γ(t) is a

geodesic, then ‖γ′(t)‖g is constant. On the other hand, if ‖γ′(t)‖g is constant, then by the

chain rule, 〈γ′(t), γ′(t)〉 is also constant. So by the above formula,
〈
Dγ′(t)
dt

, γ′(t)
〉
g

= 0. Since

Tγ(t)S
1 is 1-dimensional, and γ′(t) lies in Tγ(t)S

1, a vector being perpendicular to γ′(t) implies

that its tangential component is 0. Therefore, Dγ′(t)
dt

= 0.

Example 2.17. Let M = S2, embedded as the unit sphere in R3, and ∇T be inherited from

the directional derivative on R3. As in Example 2.16, let g be the metric induced by R3.

Let γ(t) be a great circle on S2, such that γ(t) has an arc length of t. With respect to g,

‖γ′(t)‖ is constant. By the formula in Example 2.16, we have that γ′′(t) is perpendicular to

γ′(t). Since γ only lies on the plane of the great circle, γ′(t) and γ′′(t) must also be on the

plane of the great circle. We know γ′(t) is tangent to the sphere, so this forces γ′′(t) to point

along the radius of the circle. Therefore, since the tangential component of γ′′(t) is 0, we

have that Dγ′(t)
dt

= 0.

10



2. RIEMANNIAN GEOMETRY

O

γ′′(t)

γ′(t)

Figure 2: A great circle on S2. The dashed red line shows the geodesic curve γ(t). The velocity of the curve
at a point is shown by γ′(t), with γ′′(t) perpendicular to it.

For a manifold M , if we fix the initial conditions, a geodesic always exists and is unique.

Theorem 2.18. Let p ∈M and v0 ∈ TpM . Then there exists a unique geodesic γ : (−ε, ε)→
M with γ(0) = p and γ′(0) = v0.

Proof. Let γ be a curve on M and (U,ϕ = (x1, ..., xn)) be a chart containing p. Let yi(t) =

(xi ◦ γ)(t). We can describe the desired geodesic as the solution to a system of ODEs, and

refer to the existence and uniqueness theorem of solutions of ODEs. For convenience, we

will simply write functions such as yi(t) instead as yi and ∂i|γ(t) simply as ∂i. The velocity

of γ can be expressed in local coordinates:

γ′ =
∑
i

(yi)′∂i.

For γ to be a geodesic, it must be the case that:

Dγ′

dt
= 0.

By the properties of covariant differentiation:

Dγ′

dt
=
∑
k

(yk)′′∂k +
∑
j

(yj)′
D∂j
dt

=
∑
k

(yk)′′∂k +
∑
j

(yj)′∇γ′∂j

=
∑
k

(yk)′′∂k +
∑
i,j

(yj)′∇(yi)′∂i∂j

=
∑
k

(yk)′′∂k +
∑
i,j,k

(yi)′(yj)′Γkij∂k.

11



2. RIEMANNIAN GEOMETRY

Therefore, γ is a geodesic if and only if for all k = 1, .., n:

(yk)′′ +
∑
i,j

(yi)′(yj)′Γkij = 0.

So by the existence and uniqueness theorem of solutions of ODEs, there exists γ : (−ε, ε)→
M satisfying this system, such that γ(0) = p and γ′(0) = v0.

The system of ODEs in the previous theorem are commonly referred to as the geodesic

equations.

By their existence and uniqueness, geodesics induce a map expp : U → M , defined by

expp(v) = γ(1), where U is an open subset of TpM containing p and γ(t) is the unique curve

such that γ(0) = p and γ′(0) = v. This is known as the exponential map.

2.5 Parallel Translation

Next we generalize the notion of two tangent vectors in Rn being parallel to each other. Let

γ : [a, b] → M be a curve on a manifold M and let X(t) be a vector field defined on γ(t),

parameterized by t ∈ [a, b]. When we looked at geodesics, we were choosing X(t) = γ′(t),

but here, we allow X(t) to be any smooth vector field over γ(t). An affine connection ∇
allows us to understand how X(t) changes with respect to t as we move along the curve γ.

Similarly, we can think about what it means for X(t) to be constant along γ.

Definition 2.19. We say a vector field X(t) along a curve γ : [a, b] → M is parallel with

respect to an affine connection ∇ if DX(t)
dt

= 0 for all t.

It is actually the case that if we fix a tangent vector on a curve γ, there exists a unique

parallel vector field along γ satisfying that initial condition. This result comes from the fact

that a parallel vector field can be described as the solution to a system of ODEs, similar to

the case of geodesics.

Theorem 2.20. Let γ : [a, b]→M be a curve on a Riemannian manifold (M, g) with affine

connection ∇. Given a tangent vector v0 at γ(t0) for some t0 ∈ (a, b), there exists a unique

parallel vector field X(t) on γ such that X(t0) = v0.

Proof. We will describe the parallel vector field by a system of ODEs and appeal to the

uniqueness and existence theorem for the solution of ODEs. Assume for now that γ is a

curve that lies in a single coordinate chart, (U,ϕ = (x1, ..., xn)). Let X =
∑

iX
i∂i, and let

12



2. RIEMANNIAN GEOMETRY

yi = xi ◦ γ. Then we have:

γ′ =
∑
i

(yi)′∂i.

The condition for X to be parallel is:

DX

dt
= 0.

By the properties of covariant differentiation:

DX

dt
=
∑
k

(Xk)′∂k +
∑
j

XjD∂j
dt

=
∑
k

(Xk)′∂k +
∑
j

Xj∇γ′(t)∂j

=
∑
k

(Xk)′∂k +
∑
i,j

Xj∇(yi)′∂i∂j

=
∑
k

(Xk)′∂k +
∑
i,j,k

Xj(yi)′Γkij∂k

By the parallel condition, this is equivalent to solving the system of n ODEs:

(Xk)′ = −
∑
i,j

Xj(yi)′Γkij

for k = 1, ..., n. If γ(t) is contained in a single chart, then since this is a system of linear

ODEs, a solution exists for the entirety of [a, b]. The solution also guarantees that we obtain

a smooth vector field. If γ(t) is covered by multiple charts, then given the initial condition

X(t0) = v0, there exists a unique solution in an open interval (t0−ε, t0 +ε). However, we can

choose coordinates centered at γ(t) for any t ∈ [a, b] and by uniqueness, solutions will have

to agree on the overlap of open sub-intervals of [a, b]. Furthermore, since [a, b] is compact,

it is covered by finitely many open intervals. Hence there is one solution over the entire

interval [a, b].

Definition 2.21. Given a curve γ : [a, b]→ M and v ∈ Tγ(t0)M for some t0 ∈ [a, b], we say

u ∈ Tγ(t0+h)M is obtained from v by parallel translation if the unique parallel vector field

X(t) satisfying X(t0) = v also has X(t0 + h) = u.

Once a curve has been fixed, the parallel translation along the curve induced by an affine

connection defines a vector space isomorphism for any pair of points on a curve. This

isomorphism is denoted by:

Pγ(a)γ(b) : Tγ(a)M → Tγ(b)M.

13
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In general, the isomorphism depends on the particular choice of γ.

Example 2.22. Let M = R2 and γ : [0, π] → R2 be defined to be γ(t) = (cos t, sin t).

Suppose we fix v = ∂y|γ(0) ∈ Tγ(0)R2 and we wish to compute Pγ(0)γ(π)(v) where ∇ is the

directional derivative on R2. If we can come up with a vector field X(t) on γ(t) which is

parallel and satisfies X(0) = v, then X(t) will give us the parallel translation of v along the

entire curve. If we let X(t) = ∂y|γ(t), then X(0) = v, and since Dγ′(t)∂y|γ(t) = 0, we must

have DX
dt

= 0 for all t. Therefore, Pγ(0)γ(π)(v) = ∂y|γ(π).

−2 −1 1 2

−2

−1

1

2

γ(0)γ(π)

vPγ(0)γ(π)(v)

x

y

Figure 3: Parallel translation on R2 along the curve γ(t) = (cos t, sin t).

Example 2.23. A version of this example can be found at [31]. Consider the unit sphere

S2 embedded in R3 with affine connection ∇T . Let γ(t) = (
√
2
2

cos t,
√
2
2

sin t,
√
2
2

), on the

domain [0, 2π], and let v = (−
√
2
2
, 0,

√
2
2

) be centered at γ(0). It is tempting to think that

Pγ(0)γ(2π)(v) = v, that is, translating v around the closed loop will result in getting v back.

However, this is not the case. To help visualize what the parallel transport will look like

on the sphere, picture the cone C, with a vertex lying above the sphere’s origin, which is

tangent to the sphere at γ(t).

14
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O 1

γ(0) = γ(2π)

v

O

Q

P

1

v

Figure 4: Parallel translation around a closed curve (in red) on S2. The right image shows the cone tangent
to S2 along γ(t), and the triangle formed by P,O, and Q = γ(0).

The key thing to note is if two surfaces embedded in R3 are tangent, then at the point of

tangency, their respective tangent spaces coincide. That is, for all t, p = γ(t) can be thought

of as a point in R3, in S2, and in C. TpS
2 and TpC can be thought of as subspaces of TpR3,

but because of the tangency, TpS
2 = TpC. Since the tangent spaces TpS

2 and TpC coincide

along all of γ, parallel translation with respect to either surface along γ will agree with the

other.

Additionally, we can “flatten” the cone into R2. If we were to cut the cone along v and

lay it flat, we would get:

θ

θ

v

Pγ(0)γ(2π)(v)

Figure 5: The flattened cone, on which parallel translation mimics parallel translation on R2.

Even though C is not smooth and the tangent space at the vertex of the cone is not

defined, this does not pose a problem, since we are only interested in points along γ(t). The

“flattening” is a local isometric embedding of γ(t) in R2, by which for all t, Tγ(t)C = Tγ(t)R2.

Therefore, parallel translation along γ in C will agree with parallel translation on R2, using

the directional derivative.

To determine how much v will change after translation, we can compute θ: the angle

15
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between v and Pγ(0)γ(2π)(v). Note the radius of the curve γ(t) as it appears on the sphere is
√
2
2

. Consider the triangle formed by P,O, and Q = γ(0). Since the cone is tangent to the

sphere, ∠PQO = 90o. Furthermore, since the x-coordinate of Q is
√
2
2

, and cos(45o) =
√
2
2

, we

have ∠POQ = 45o. Therefore, 4POQ is isosceles, which means the radius of the flattened

cone is equal to the radius of the sphere, which is 1.

The ratio of the radius of the curve γ(t) to the radius of the flattened cone is the same

as the ratio of their circumferences. Therefore, θ = 2π(1 −
√
2
2

), and we can conclude that

Pγ(0)γ(2π)(v) will make an angle of 2π(1 −
√
2
2

) with v. This proves that parallel translation

along a closed curve does not necessarily give the starting vector back.

Finally, we remark that the covariant derivative along a curve γ(t) can also be written in

terms of parallel translation.

Theorem 2.24. Given an affine connection ∇ on a manifold M , a curve γ : [a, b] → M ,

and a vector field Y (t) defined on γ(t) we have:

DY (t0)

dt
= lim

h→0

Pγ(t0+h)γ(t0)(Y (t0 + h))− Y (t0)

h
.

Proof. Let {∂1, ..., ∂n} be a basis for Tγ(t0)M . For some ε > 0, we can parallel translate

∂i|γ(t0) to any point γ(t) for t ∈ (t0 − ε, t0 + ε). In other words, in these local coordinates:

D∂i|γ(t0)
dt

= 0.

By the Leibniz rule, we have:

DY (t0)

dt
=
∑
i

(Y i)′(t0)∂i|γ(t0) + Y i(t0)
D∂i|γ(t0)

dt

=
∑
i

(Y i)′(t0)∂i|γ(t0)

= lim
h→0

∑
i Y

i(t0 + h)−
∑

i Y
i(t0)

h
∂i|γ(t0)

= lim
h→0

Pγ(t0+h)γ(t0)(Y (t0 + h))− Y (t0)

h
.

The last equality is by the choice of a parallel frame along γ. Therefore, we have the desired

result.
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2.6 Metric Connections

So far, the Riemannian metric and affine connections onM are independently defined objects.

There is no particular reason for an affine connection to be related to the metric, so we will

define a class of connections that interact in a desirable way with the metric.

Definition 2.25. We say an affine connection ∇ on (M, g) is a metric connection (or

compatible with the metric) if for all X, Y, Z ∈ X(M) the following equation is satisfied:

Z〈X, Y 〉g = 〈∇ZX, Y 〉g + 〈X,∇ZY 〉g.

The criterion to be a metric connection can also be interpreted as a requirement on the

parallel translation given by a connection.

Theorem 2.26. An affine connection ∇ is a metric connection if and only if for every curve

γ : [a, b] → M the vector space isomorphism Pγ(a)γ(b) induced by the parallel transport of ∇
is an isometry.

Proof. ( =⇒ ) Suppose ∇ is a metric connection. Let X and Y be parallel vector fields on

a curve γ, and set Z = γ′. Then:

Z〈X, Y 〉g = 〈∇ZX, Y 〉g + 〈X,∇ZY 〉g
= 〈0, Y 〉g + 〈X, 0〉g
= 0.

Therefore, the inner product along γ is preserved by parallel translation.

( ⇐= ) Let X, Y, Z ∈ X(M). Let p ∈ M and consider a curve γ such that γ(0) = p and

γ′(0) = Z(p). We will denoteX(γ(t)) byX(t). Therefore, Z(p)〈X, Y 〉g = d
dt

∣∣∣∣
t=0

〈X(t), Y (t)〉g,

so we will prove that:

d

dt

∣∣∣∣
t=0

〈X(t), Y (t)〉g = 〈X(t),∇γ′(t)Y (t)〉g + 〈∇γ′(t)X(t), Y (t)〉g.

For clarity, we will denote Pγ(h)γ(0) by P−h. By assumption, this map does not change the

17
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inner product, so we have:

d

dt

∣∣∣∣
t=0

〈X(t), Y (t)〉g = lim
h→0

〈X(t+ h), Y (t+ h)〉g − 〈X(t), Y (t)〉g
h

= lim
h→0

1

h
(〈P−h(X(t+ h)), P−h(Y (t+ h))〉g − 〈X(t), Y (t)〉g)

= lim
h→0

1

h
(〈P−h(X(t+ h)), P−h(Y (t+ h))〉g − 〈P−h(X(t+ h)), Y (t)〉g

+ 〈P−h(X(t+ h)), Y (t)〉g − 〈X(t), Y (t)〉g)

= lim
h→0

1

h
〈P−h(X(t+ h)), P−h(Y (t+ h))− Y (t)〉g

+ lim
h→0

1

h
〈P−h(X(t+ h))−X(t), Y (t)〉g

= 〈X(t),∇γ′(t)Y (t)〉g + 〈∇γ′(t)X(t), Y (t)〉g,

where the final step is due to Theorem 2.24.

2.7 Torsion and the Levi-Civita Connection

A Riemannian manifold (M, g) may allow many different metric connections. In this section

we will see that if we impose another condition, there is only one connection satisfying these

two requirements. To this end, we have the following definition.

Definition 2.27. For a connection ∇ on (M, g), the map T : X(M)×X(M)→ X(M) given

by:

T (X, Y ) = ∇XY −∇YX − [X, Y ]

is called the torsion of ∇. If T = 0, then we say ∇ is torsion-free.

The torsion can be shown to be a (21)-tensor field on M , meaning it is C∞(M)-linear in

both entries.

Sometimes, instead of calling ∇ torsion-free, we call it symmetric. This name comes from

the following theorem.

Theorem 2.28. An affine connection ∇ is torsion-free if and only if in some local coordi-

nates, Γkij = Γkji for all i, j, k.

Proof. It suffices to show that, in some local coordinates, T (∂i, ∂j) = 0 if and only if Γkij = Γkji

18
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for all k.

T (∂i, ∂j) = 0 ⇐⇒ ∇∂i∂j −∇∂j∂i − [∂i, ∂j] = 0

⇐⇒ ∇∂i∂j −∇∂j∂i = 0

⇐⇒
∑
k

Γkij∂k =
∑
k

Γkji∂k

⇐⇒ Γkij = Γkjifor all k

Now we see the fundamental theorem of Riemannian geometry.

Theorem 2.29. There exists a unique connection ∇ on (M, g) such that:

1. ∇ is a metric connection,

2. ∇ is torsion-free.

Furthermore, in local coordinates (x1, ..., xn), the connection is written in terms of the metric

as:

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij)

where G−1 = (gkl) is the inverse matrix of the metric.

Proof. Condition 1) means that ∇ satisfies the formula:

∂i〈∂j, ∂k〉g = 〈∇∂i∂j, ∂k〉g + 〈∂j,∇∂i∂k〉g

for all i, j, k. By the definition of the metric, we know that:

〈∂i, ∂j〉g = gij.

And by the properties of this inner product, we have:

〈∇∂i∂j, ∂k〉g =

〈∑
l

Γlij∂l, ∂k

〉
g

=
∑
l

Γlij〈∂l, ∂k〉g

=
∑
l

Γlijglk.

19



2. RIEMANNIAN GEOMETRY

Therefore 1) can be rewritten as:

∂igjk =
∑
l

(Γlijglk + Γlikglj).

Since condition 2) allows the bottom indices of the Christoffel symbols to commute, we have:

1

2
gkl(∂igjl + ∂jgil − ∂lgij) =

1

2
gkl
∑
m

(Γmijgml + Γmil gmj + Γmjigml + Γmjlgmi − Γmli gmj − Γmlj gmi)

=
1

2
gkl
∑
m

(Γmijgml + Γmil gmj + Γmijgml + Γmjlgmi − Γmil gmj − Γmjlgmi)

=
1

2
gkl
∑
m

(2Γmijgml)

=
∑
m

Γmijg
klgml

=
∑
m

Γmij δ
k
m

= Γkij.

Since the expression on the left-hand side is only in terms of the metric, the connection is

unique.

Definition 2.30. The unique torsion-free metric connection on a Riemannian manifold is

known as the Levi-Civita connection.

2.8 Curvature and Flat Manifolds

In Example 2.23, it may seem unusual that parallel translation along a closed loop results

in a different vector than the starting vector, whereas on Rn, this is not the case. However,

this is due to the sphere having an intrinsic curvature that is not present in Euclidean space.

To take a closer look at this, we have the following definition:

Definition 2.31. Given a connection ∇ on (M, g), the map R : X(M)× X(M)× X(M)→
X(M) given by:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

is called the curvature endomorphism of ∇. If R(X, Y )Z = 0 for all X, Y, Z, then we

say M is ∇-flat.

It follows from straight-forward calculations that the curvature endomorphism is a (31)-

tensor field on M .
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There are several equivalent ways of formulating flatness on a manifold. For example, as

was alluded to at the beginning of the section, M being ∇-flat can be understood in terms

of the parallel translation induced by ∇.

Theorem 2.32. The following are equivalent:

1. M is ∇-flat.

2. For all p ∈M , there exists a local parallel frame around p.

3. Parallel translation with respect to ∇ is path-independent. That is, if γ and γ̃ are two

curves R → U ⊂ M with γ(0) = γ̃(0) and γ(1) = γ̃(1), then Pγ(0)γ(1)(v) = Pγ̃(0)γ̃(1)(v)

for all v ∈ Tγ(0)M .

Proof. (1 =⇒ 2) This proof is due to Lee [27]. Suppose the curvature endomorphism with

respect to ∇ is R = 0. Let p ∈ M be centered in the chart (U,ϕ = (x1, ..., xn)), so that

ϕ(p) = (0, ..., 0) and TpM = span{∂1|p, ..., ∂n|p}. To avoid confusion, we will denote the basis

of TpM by {E1, ..., En}. Without loss of generality, we can assume that the image of ϕ is an

open hypercube in Rn: C = {x ∈ Rn | −ε < xi < ε,∀i ∈ {1, ..., n}}, where ε > 0, since C

will be contained in the image of the coordinate chart for some ε.

Consider fixing j ∈ {1, ..., n} and using ∇ to parallel translate Ej along the x1 direction.

By doing so, we can obtain vectors in C along the entirety of the x1-axis, which we denote

by Ej(q), where ϕ(q) is on the x1-axis. Then for each Ej(q), we can parallel translate this

vector along the x2-direction and obtain vectors on the entire (x1, x2)-plane. If we continue

this construction for the remaining xi-axes, we obtain a vector field Ej(q) over the entirety

of U . Theorem 2.20 guarantees that Ej(q) will be smooth.

We now show by induction that if ϕ(q) lies in the span of the first k axes of C, then

∇∂iEj(q) = 0 for all i ∈ {1, ..., k}. If k = 1, then ϕ(q) is on the x1-axis, so by construction,

∇∂1Ej(q) = 0. Suppose that the inductive hypothesis holds for k = m, with 1 ≤ m < n.

We must show that if ϕ(q) lies in the span of the first m+ 1 axes, then ∇∂iEj(q) = 0 for all

i ∈ {1, ...,m + 1}. We know that Ej(q) was obtained by parallel translating a vector in the

span of the first m axes along the xm+1-axis, so by construction, ∇∂m+1Ej(q) = 0. If ϕ(q)

happens to lie only in the span of the first m axes, then ∇∂iEj(q) = 0 for all i ∈ {1, ...,m}
by the inductive hypothesis. We will show that ∇∂m+1∇∂iEj(q) = 0 for all i ∈ {1, ...,m}.

Note that by our assumption of ∇-flatness, and the fact that [∂m+1, ∂i] = 0 for i ∈ {1, ...,m},

21



2. RIEMANNIAN GEOMETRY

we have:

0 = ∇∂m+1∇∂iEj(q)−∇∂i∇∂m+1Ej(q)−∇[∂m+1,∂i]Ej(q)

0 = ∇∂m+1∇∂iEj(q)−∇∂i∇∂m+1Ej(q)

∇∂i∇∂m+1Ej(q) = ∇∂m+1∇∂iEj(q).

But ∇∂m+1Ej(q) = 0, so:

∇∂i0 = ∇∂i+1
∇∂iEj(q)

0 = ∇∂i+1
∇∂iEj(q).

Therefore, ∇∂iEj(q) is constant along the xm+1 direction. However, we know that when

xm+1(q) = 0, ∇∂iEj(q) = 0 by the inductive hypothesis, so by uniqueness of the parallel

transport ∇∂iEj(q) = 0 on the entire span of the first m + 1 axes. Finally, if we set k = n,

we can conclude that Ej(q) is parallel on all of U . Therefore, following the construction for

each j, we obtain a local parallel frame.

(2 =⇒ 1) Let {s1, ..., sn} be a local parallel frame on U ⊂M . That is, ∇Xsi(p) = 0 for all

p ∈ U and all X ∈ X(M) for i = 1, ..., n. Then for all X, Y ∈ X(M):

R(X, Y )(si(p)) = ∇X∇Y si(p)−∇Y∇Xsi(p)−∇[X,Y ]si(p) = 0.

Since the curvature endomorphism is a tensor, it is C∞(M)-linear in each entry. If Z(p) =∑
i Z

i(p)si(p), then:

R(X, Y )Z(p) = R(X, Y )

(∑
i

Zi(p)si(p)

)
=
∑
i

Zi(p)R(X, Y )si(p)

=
∑
i

Zi(p)0

= 0.

So the curvature endomorphism vanishes.

(2 =⇒ 3) Let {s1, ..., sn} be a local parallel frame on U ⊂ M . Let Xp ∈ TpM for p ∈ U ,

which we can write in terms of the local frame:

Xp =
∑
i

xisi(p)
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where xi ∈ R. Let γ : R → U be such that γ(0) = p and γ(1) = q, where q ∈ U . Note

that since si is parallel, ∇γ′(t)si(p) = 0 for all t ∈ [0, 1], so therefore by uniqueness of parallel

translation,

Pγ(0)γ(1)(si(p)) = si(q).

This result is independent of the choice of γ. Since Pγ(0)γ(1) is an isomorphism from TpM to

TqM , we have:

Pγ(0)γ(1)(Xp) = Pγ(0)γ(1)

(∑
i

xisi(p)

)
=
∑
i

(
xiPγ(0)γ(1)(si(p))

)
=
∑
i

xisi(q).

Hence, parallel transport is path-independent.

(3 =⇒ 2) Let p ∈ M be centered in the chart (U,ϕ = (x1, ..., xn)), with TpM =

span{∂1|p, ..., ∂n|p}. Suppose that parallel translation with respect to ∇ is path-independent.

Denote ∂i|p by Ei. We can define a local parallel frame {s1, ..., sn} by setting

si(q) = Pγ(0)γ(1)(Ei)

where γ : R → U is any curve with γ(0) = p and γ(1) = q. This is well-defined since

parallel translation is path-independent. Furthermore, si(p) is parallel on U and smooth by

construction. Therefore, {s1, ..., sn} is a local parallel frame.

Corollary 2.33. If M is ∇-flat, and (U,ϕ = (x1, ..., xn)) is a local chart centered at p ∈M ,

then for any curve γ : R→ U with γ(0) = γ(1) = p, the isomorphism Pγ(0)γ(1) is the identity

map on TpM .

Proof. By the previous theorem, parallel translation with respect to ∇ is path-independent,

and clearly when γ is the constant path (γ(t) = p for all t), Pγ(0)γ(1)(v) = v, for all v ∈
TpM .

In Example 2.23, S2 was not ∇-flat, so based on the results in this section, it is not

surprising that the vector obtained by translating around a closed loop was not the same as

the starting vector.
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2.9 Dual Affine Connections

We have seen that when ∇ is a metric connection, the inner product is preserved by parallel

translation. However, even when ∇ is not a metric connection, there exists a so-called dual

affine connection which, in conjunction with the original connection, preserves the inner

product.

Definition 2.34. Given an affine connection ∇ on (M, g), the dual affine connection ∇∗

is the connection that satisfies:

Z〈X, Y 〉g = 〈∇ZX, Y 〉g + 〈X,∇∗ZY 〉g

for all X, Y, Z ∈ X(M).

First, we will see that the dual affine connection always exists and is unique, as well as

the reason why it can be considered a dual.

Theorem 2.35. The dual affine connection exists and is unique.

Proof. Recall from Theorem 2.29 that:

〈∇∂i∂j, ∂k〉g =
∑
l

Γlijglk.

Therefore, ∇∗ can be written in terms of ∇ as:

∂igjk =
∑
l

Γlijglk +
∑
l

(Γ∗)likglj,

∂igjk −
∑
l

Γlijglk =
∑
l

(Γ∗)likglj

∑
j

(
∂igjk −

∑
l

Γlijglk

)
gjm =

∑
j,l

(Γ∗)likgljg
jm

∑
j

(
∂igjk −

∑
l

Γlijglk

)
gjm =

∑
l

(Γ∗)likδ
m
l

∑
j

(
∂igjk −

∑
l

Γlijglk

)
gjm = (Γ∗)mik
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Now suppose ∇1 and ∇2 are both dual to ∇. Then for all X, Y, Z ∈ X(M):

0 = 〈∇ZX, Y 〉g + 〈X,∇1
ZY 〉g − 〈∇ZX, Y 〉g − 〈X,∇2

ZY 〉g
0 = 〈X,∇1

ZY 〉g − 〈X,∇2
ZY 〉g

0 = 〈X,∇1
ZY −∇2

ZY 〉g0 = ∇1
ZY −∇2

ZY

∇1
ZY = ∇2

ZY.

Therefore, the dual affine connection is unique.

Theorem 2.36. The connection ∇∗ is dual in the sense that (∇∗)∗ = ∇.

Proof. Let X, Y, Z ∈ X(M). By symmetry of the metric:

Z〈X, Y 〉g = Z〈Y,X〉g
= 〈∇ZY,X〉g + 〈Y,∇∗ZX〉g
= 〈∇∗ZX, Y 〉g + 〈X,∇ZY 〉g.

So (∇∗)∗ = ∇.

A natural question to ask is: under what conditions is an affine connection equal to its

own dual?

Theorem 2.37. An affine connection ∇ is self-dual (∇∗ = ∇) if and only if ∇ is a metric

connection.

Proof. ( =⇒ ) Substituting ∇∗ with ∇ in the definition of the dual affine connection yields

exactly the requirement for ∇ to be a metric connection.

(⇐= ) If ∇ satisfies the formula:

Z〈X, Y 〉g = 〈∇ZX, Y 〉g + 〈X,∇ZY 〉g

then by uniqueness of the dual affine connection, the only choice for ∇∗ is ∇∗ = ∇.

An interesting fact about dual connections is that their average is always a metric connec-

tion, even if neither of them is a metric connection. Linear combinations of affine connections

are, in general, not connections since the Leibniz rule may fail. However, convex combina-

tions are valid, so the average of two connections is a connection.

Lemma 2.38. A finite convex combination of affine connections is an affine connection.
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Proof. Let ∇1, ...,∇k be affine connections on M . Set ∇ =
∑

i αi∇i where
∑

i αi = 1 and

αi ≥ 0 for all i. Then ∇ will have linearity in the first component:

∇fXY =
∑
i

αi∇i
fXY

=
∑
i

αif∇i
XY

= f
∑
i

αi∇i
XY

= f∇XY.

And ∇ will satisfy the Leibniz rule:

∇XfY =
∑
i

αi∇i
X(fY )

=
∑
i

αi((Xf)Y + f∇i
XY )

=
∑
i

αi(Xf)Y +
∑
i

αif∇i
XY

= (Xf)Y + f∇XY.

Hence, ∇ is an affine connection.

Theorem 2.39. Given an affine connection ∇ and its dual ∇∗, their average 1
2
(∇+∇∗) is

a metric connection.

Proof. By the previous lemma, 1
2
(∇ + ∇∗) is an affine connection. Let X, Y, Z ∈ X(M).

Then we have:

Z〈X, Y 〉g =
1

2
(2Z〈X, Y 〉g)

=
1

2
(〈∇ZX, Y 〉g + 〈X,∇∗ZY 〉g + 〈∇∗ZX, Y 〉g + 〈X,∇ZY 〉g)

=
1

2
(〈∇ZX, Y 〉g + 〈∇∗ZX, Y 〉g) +

1

2
(〈X,∇ZY 〉g + 〈X,∇∗ZY 〉g)

= 〈1
2

(∇+∇∗)ZX, Y 〉g + 〈X, 1

2
(∇+∇∗)ZY 〉g.

So 1
2
(∇+∇∗) is a metric connection.

With this result, it is tempting to find a relationship between dual affine connections and

the Levi-Civita connection. However, it is not the case that their average yields a torsion-free
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connection in general. To get this result, we still require that both ∇ and its dual ∇∗ are

torsion-free.

Theorem 2.40. Let ∇ be an affine connection on (M, g) and its dual be ∇∗. If ∇ and ∇∗

are both torsion-free, then 1
2
(∇+∇∗) is the Levi-Civita connection on (M, g).

Proof. We know that 1
2
(∇+∇∗) is a metric connection, so all that remains to show is that

it is torsion-free when ∇∗ and ∇∗ are torsion-free. This can easily be seen by the Christoffel

symbols. Let Γ
k

ij denote the Christoffel symbols of the average of the affine connections.

Note that:

Γ
k

ij =

(
1

2
(∇+∇∗)∂i∂j

)k
=

(
1

2
(∇∂i∂j +∇∗∂i∂j)

)k
=

1

2
(Γkij + (Γ∗)kij).

So the Christoffel symbols of the average of the connections is simply the average of the

symbols. Then it is clear that:

Γ
k

ij =
1

2
(Γkij + (Γ∗)kij)

=
1

2
(Γkji + (Γ∗)kji)

= Γ
k

ji.

So 1
2
(∇+∇∗) is the Levi-Civita connection on (M, g).

Remark 2.41. It is not the case that ∇ being torsion-free implies ∇∗ is torsion-free. Take

R2 with the Euclidean metric. Define ∇ by setting Γ2
11 = 1, and all else to be the constant

function 0. We can see that ∇ is torsion-free, since clearly Γkii = Γkii for i = 1, 2, and

Γk12 = 0 = Γk21 for all k. This forces ∇∗ to be given by:

∂i〈∂j, ∂k〉g = 〈∇∂i∂j, ∂k〉g + 〈∂j,∇∗∂i∂k〉g
0 = Γkij + (Γ∗)jik

−Γkij = (Γ∗)jik.

Then (Γ∗)112 = −Γ2
11 = −1, but (Γ∗)121 = −Γ1

21 = 0. So ∇∗ is not torsion-free, meaning the

requirement that both ∇ and ∇∗ have to be torsion-free in the previous theorem cannot be

relaxed to only ∇ being torsion-free.
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3 Geometry of Statistical Manifolds

3.1 Parameter Spaces of Probability Distributions

Information geometry is primarily about spaces of parametric probability distributions.

First, we give the definition of a discrete probability distribution.

Definition 3.1. Let X = {X1, ..., Xn}. A discrete probability distribution is any non-

negative function P : X → R, such that
∑

i P (Xi) = 1.

The set X is the domain of the random variable. This definition can be extended to

any measure space, but aside from finite sets, we will only consider when X = R.

Definition 3.2. Suppose X = R. A continuous probability distribution is any non-

negative, Lebesgue integrable function P : X → R such that
∫
X P (x)dx = 1.

Remark 3.3. The function P (x) given in Definition 3.2 is generally referred to as the

probability density function. The probability that the random variable x ∈ X lies in

[a, b] ⊂ R is given by: ∫ b

a

P (x)dx.

In this paper, we simply refer to this function as the probability distribution.

Consider the parametric family of normal distributions, which have two parameters θ =

(µ, σ):

P (x; θ) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ ∈ R and σ > 0. Suppose we have a set of data {X1, ..., Xn}, which we know follows

a normal distribution, and we want to estimate the values of θ of that distribution. Since

the probability density function of the normal distribution is very well-behaved, one could

simply apply the method of maximum-likelihood estimation and determine that the best

estimates are

µ =

∑
iXi

n

and

σ =

√∑
i (Xi − µ)

n
.

However, not all families of parametric distributions have a closed-form solution for their

maximum-likelihood estimates. If this is the case, we can still estimate θ using a numerical
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method. We will continue to use the normal distribution as a simple example, despite the

existence of a closed-form solution.

Let us associate every normal distribution with a point in the open upper half-plane of

R2, where the coordinates of a distribution are given by (µ, σ). Then, in order to find an

optimal choice for θ that could have produced {X1, ..., Xn}, we define the likelihood function:

L(θ) =
∏
i

P (Xi; θ),

and maximize L(θ) over the upper half-plane of R2 using a numerical method. By doing so,

we will approximate the values of θ that were most likely to have produced {X1, ..., Xn}, in

the sense that the total probability of producing these values has been maximized.

Numerical methods that are used to optimize functions (such as gradient descent or

Newton’s method) are often iterative: that is, they involve traversing the domain over many

steps. We should, therefore, be concerned about whether or not Euclidean distance in the

parameter space is a good measurement of “distance” between two normal distributions, as

it comes into play in many of these numerical methods. For example, take the following four

points in the parameter space:

−2 2 4 6

1

2

3

(0, 1)

(0, 2)

(4, 1)

(4, 2)

µ

σ

Figure 6: Points in the parameter space of normal distributions.

The upper two points and the lower two points have the same Euclidean distance in the

parameter space. However, these are what their probability distributions look like:
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x

y

Figure 7: Comparison between two pairs of normal distributions that have the same Euclidean distance in
the parameter space. The first plot shows the points (0, 2) and (4, 2), while the second plot shows (0, 1) and
(4, 1).

This suggests that the improvements made by an iterative optimization method may be

unpredictable, since the Euclidean distance in the parameter space is seemingly unrelated

to how similar two distributions appear. The goal of this section is to show that we can

interpret spaces of parametric probability distributions as Riemannian manifolds, where the

parameters define local coordinates. Later, we will see a precise example of a numerical

optimization method, called gradient descent, and how its performance can be improved by

leveraging Riemannian geometry.

3.2 Divergences of Probability Distributions

In this section, we will introduce the concept of a divergence, which is a way of comparing two

probability distributions, as an alternative to using the Euclidean distance in the parameter

space. Shannon and Weaver [40] viewed a probability distribution as an information source.

They studied the concept of entropy, which Shannon referred to as the amount of freedom

of choice a source of information has. If the result of a random variable is often the same

value, then the entropy of that probability distribution is low, and if the random variable is

evenly distributed, then the entropy is as high as it can be. Formally, the entropy H of a
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discrete distribution P (x) with x ∈ X = {X1, ..., Xn} is written as:

H(P ) = −
∑
x∈X

P (x) logP (x).

If P (x) is over a continuous random variable (X = R), then the entropy (sometimes referred

to as differential entropy) is given by:

H(P ) = −
∫
X
P (x) logP (x)dx.

It is worth noting that in the continuous case, may not be finite, but we will assume finiteness

for this paper. We consider the logarithm here to be with base e, but in many applications

in computer science where entropy represents the expected number of bits needed to encode

a message, the base would be 2.

In practice, one often approximates a true distribution P (x) using an estimated distribu-

tion Q(x). Similar to above, we can then compute the entropy of Q(x), but over the data

produced by P (x):

H(P,Q) = −
∫
X
P (x) logQ(x)dx.

This is referred to as the cross-entropy between P (x) and Q(x). In the context of machine

learning, cross-entropy is often adapted as a loss function, which is used to optimize the

performance of a network, when the output of the classifier can be compared to the true

desired output (for example, in image classification tasks [20]).

Kullback and Leibler [23, 13], who studied decision theory, introduced an idea closely re-

lated to cross-entropy which they called the Kullback-Leibler risk. Currently, in information

geometry and machine learning, this is called the KL-divergence.

Definition 3.4. The KL-divergence between two distributions P (x) and Q(x) over the

same random variable is:

KL(P ‖ Q) = −
∫
X
P (x) log

(
Q(x)

P (x)

)
dx.

One interpretation of the KL-divergence is that it is the difference between the cross-

entropy of an approximating distribution and the entropy of the true distribution. We can
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see this by a short calculation:

H(P,Q)−H(P ) = −
∫
X
P (x) logQ(x)dx+

∫
X
P (x) logP (x)dx

=

∫
X
P (x)[logP (x)− logQ(x)]dx

=

∫
X
P (x) log

(
P (x)

Q(x)

)
dx

= −
∫
X
P (x) log

(
Q(x)

P (x)

)
dx

= KL(P ‖ Q).

It is sometimes called the KL-distance, but this is a misnomer, since it does not satisfy

all the requirements of being a distance metric. In particular, the KL-divergence is not

symmetric and it does not satisfy the triangle inequality.

The KL-divergence is deeply motivated by information theory, but we can define a more

general notion of a divergence on probability distributions.

Definition 3.5. Let S be the set of all probability distributions over X . A divergence on

S is a function D : S × S → R that satisfies for all P (x), Q(x) ∈ S:

1. D(P ‖ Q) ≥ 0

2. D(P ‖ Q) = 0 if and only if P = Q

We will see later that the KL-divergence falls under the more general definition of a

divergence. The aim of the remainder of this chapter is to show that even when we allow

ourselves to use the more general definition of a divergence as above, the KL-divergence

will remain the most natural choice of divergence in information geometry, as it lies in the

intersection of two important divergence classes.

3.3 f-Divergences

We start with the definition of an f -divergence.

Definition 3.6. An f-divergence is a divergence function of the form:

Df (P ‖ Q) =

∫
X
P (x)f

(
Q(x)

P (x)

)
dx
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where f : [0,+∞)→ R is a strictly convex, differentiable function such that f(1) = 0.

Theorem 3.7. An f -divergence is a divergence.

Proof. By Jensen’s inequality:

Df (P ‖ Q) =

∫
X
P (x)f

(
Q(x)

P (x)

)
dx

≥ f

(∫
X
P (x)

Q(x)

P (x)
dx

)
= f

(∫
X
Q(x)dx

)
= f(1)

= 0

Clearly, Df (P ‖ P ) = 0, since f(1) = 0. To see that equality holds if and only if P (x) = Q(x),

requires strict convexity. We refer the reader to [28].

Example 3.8. The KL-divergence is an f -divergence, where f(u) = − log u.

Example 3.9. When f(u) = 1
2
(u−1)2, the derived f -divergence is the Pearson χ2-divergence:

Df (P ‖ Q) =
1

2

∫
X

(Q(x)− P (x))2

P (x)
dx.

This version of the χ2-divergence is not symmetric, but there is a symmetric version that

replaces the denominator with P (x) +Q(x).

Example 3.10. When f(u) = (
√
u−1)2, the f -divergence is known as the squared Hellinger

distance:

Df (P ‖ Q) =

∫
X

(√
P (x)−

√
Q(x)

)2
dx.

Clearly the above definition is symmetric, however, it does not satisfy the triangle inequality.

The class of f -divergences satisfies a few properties. If we let f be a strictly convex,

differentiable function with f(1) = 0, then for any c > 0, cf is also strictly convex and

differentiable. Furthermore:

Dcf (P ‖ Q) =

∫
X
P (x) · cf

(
Q(x)

P (x)

)
dx

= c ·
∫
X
P (x)f

(
Q(x)

P (x)

)
dx

= c ·Df (P ‖ Q).
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Since f is strictly convex, we can standardize the convexity by requiring that f ′′(1) = 1.

Furthermore, if g(u) = f(u)−c(u−1), then g is also convex and differentiable, with g(1) = 0

and g′(1) = f ′(1)− c. Then we note that:

Dg(P ‖ Q) =

∫
X
P (x)

[
f

(
Q(x)

P (x)

)
− c

(
Q(x)

P (x)
− 1

)]
dx

=

∫
X
P (x)f

(
Q(x)

P (x)

)
dx− c

(∫
X

(Q(x)− P (x))dx

)
= Df (P ‖ Q)− c

∫
X
Q(x)dx+ c

∫
X
P (x)dx

= Df (P ‖ Q)− c+ c

= Df (P ‖ Q).

So without loss of generality, we can also assume f ′(1) = 0 in addition to f ′′(1) = 1, since

adding this linear term does not affect the second derivative.

Definition 3.11. An f -divergence that additionally satisfies f ′(1) = 0 and f ′′(1) = 1 is

called a standard f-divergence.

The purpose that f -divergences serve in information geometry is that they are exactly

the divergences that satisfy a certain invariance criterion, which we now discuss. Csiszár

first studied the concept of information monotonicity in the context of discrete distributions,

which is summarized in [14]. Let X be the domain of a discrete random variable, and P (x)

and Q(x) be probability distributions with x ∈ X . Consider a map k : X → Y which

transforms the random variable. Define:

P (y) :=
∑

x:k(x)=y

P (x).

To avoid complications, we will always assume k is surjective. If k is also injective, then

D(P ‖ Q) = D(P ‖ Q), since k is simply a relabelling of the random events.

The more interesting case is when k is not injective, in which case information may be lost.

First we will see an example where such a map makes it impossible to tell two distributions

apart by the KL-divergence even though they were originally distinct.

Example 3.12. Let X = {1, 2, 3, 4, 5, 6} be the outcome of a die roll. Let k : X → Y = {0, 1}
be such that k(x) = 0 is x is even and k(x) = 1 when x is odd. Consider the following

probability distributions:
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Figure 8: Two distributions over X = {1, 2, 3, 4, 5, 6}.

One can compute the KL-divergence between P (x) and Q(x):

KL(P ‖ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
=

1

6

[
log 4 + log

(
4

3

)
+ log

(
1

2

)
+ log

(
1

2

)
+ log

(
4

3

)
+ log 4

]
= 0.3252.

However, under the transformation k, the two distributions P (y) and Q(y) can no longer be

told apart.

KL(P ‖ Q) =
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
= (P (2) + P (4) + P (6)) log

(
P (2) + P (4) + P (6)

Q(2) +Q(4) +Q(6)

)
+ (P (1) + P (3) + P (5)) log

(
P (1) + P (3) + P (5)

Q(1) +Q(3) +Q(5)

)
=

1

2
(log(1) + log(1))

= 0.
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The purpose of this example is to demonstrate that, at least with the KL-divergence, we

expect that KL(P ‖ Q) ≥ KL(P ‖ Q). Intuitively, this means that if a transformation

of the random variable discards information, then distributions will appear closer together.

This turns out to be a property of any f -divergence.

Definition 3.13. Let D be a divergence and k : X → Y be a transformation of a random

variable. We say D satisfies information monotonicity if for any pair of distributions

P (x) and Q(x) over X , we have:

D(P ‖ Q) ≥ D(P ‖ Q),

where

P (y) =
∑

x:k(x)=y

P (x)

and

Q(y) =
∑

x:k(x)=y

Q(x).

Theorem 3.14. Every f -divergence satisfies information monotonicity.

Proof. This proof is due to Amari [3, 4]. Let k : X → Y , let P (x) and Q(x) be distributions

over X , and let P (y) and Q(y) be the distributions under the transformation k. Suppose

Df is an f -divergence. As previously noted, if k is injective, then Df (P ‖ Q) = Df (P ‖ Q).

Suppose k is not injective. That is, there exists distinct x0, x1 ∈ X and y ∈ Y with

k(x0) = k(x1) = y. Then by convexity of f :

P (y)f

(
Q(y)

P (y)

)
= (P (x0) + P (x1))f

(
Q(x0) +Q(x1)

P (x0) + P (x1)

)
= (P (x0) + P (x1))f

(
Q(x0)

P (x0) + P (x1)
+

Q(x1)

P (x0) + P (x1)

)
= (P (x0) + P (x1))f

(
P (x0)

P (x0) + P (x1)
· Q(x0)

P (x0)
+

P (x1)

P (x0) + P (x1)
· Q(x1)

P (x1)

)
≤ (P (x0) + P (x1))P (x0)

P (x0) + P (x1)
f

(
Q(x0)

P (x0)

)
+

(P (x0) + P (x1))P (x1)

P (x0) + P (x1)
f

(
Q(x1)

P (x1)

)
= P (x0)f

(
Q(x0)

P (x0)

)
+ P (x1)f

(
Q(x1)

P (x1)

)
.

For all other x ∈ X , we simply have:

P (k(x))f

(
Q(k(x))

P (k(x))

)
= P (x)f

(
Q(x)

P (x)

)
.

36



3. GEOMETRY OF STATISTICAL MANIFOLDS

Therefore, we satisfy:

Df (P ‖ Q) ≤ Df (P ‖ Q).

This proves the case when there is a two-to-one mapping. A similar proof works for many-

to-one mappings.

In some cases, equality is achieved even when k is not injective. To look at this, we have

a definition.

Definition 3.15. Let P (x; θ) be a probability distribution with n parameters, θ = (θ1, ..., θn),

and random variable x ∈ X . A transformation of the random variable k : X → Y is called a

sufficient statistic for θi if the conditional probability P (x; θ | k(x) = y) does not depend

on θi.

Example 3.16. Consider a coin being tossed n times, where the probability of it landing

heads is p. Let X = {x = (x1, ..., xn) | xi = 0, 1} where 1 indicates heads and 0 indicates

tails. The probability of a particular event occurring is:

P (x = (x1, ..., xn); p) =
∏
i

pxi(1− p)(1−xi).

For example, if p = 0.6, then the probability of seeing x = (1, 0, 0) is:

(0.6 · 1)(1 · 0.4)(1 · 0.4) = 0.096.

Let k(x) =
∑

i xi. We show that this is a sufficient statistic for p. The probability that we

see an event where k(x) = y (that is, we see y heads) is:(
n

y

)
py(1− p)(n−y).

So, the probability that we see a particular event, given that we see y heads is given by:

P (x = (x1, ..., xn); p | k(x) = y) =
py(1− p)(n−y)(
n
y

)
py(1− p)(n−y)

=
1(
n
y

) ,
which is independent of p. So k is a sufficient statistic for p.

One way of thinking about sufficient statistics is in terms of estimating a parameter. If

k(x) is sufficient for θ, then knowing k(x) gives the same amount of information about θ

as knowing x. To use the example above, if we had a unfair coin and wanted to guess the

probability p of flipping heads, then having a list of n trials is as helpful as knowing the

number of heads in n trials.
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We now relate this back to f -divergences. We give two more definitions involving diver-

gences.

Definition 3.17. A divergence D over a parametric family of probability distributions is

invariant if it satisfies information monotonicity and equality holds if and only if k is a

sufficient statistic for each parameter.

Definition 3.18. A divergence D is decomposable if it is of the form:

D(P ‖ Q) =
∑
x∈X

d(P (x), Q(x)),

for some function d : R× R→ R.

We give the following theorem, without proof. This theorem appears in [4] and [3].

Theorem 3.19. An f -divergence is invariant and decomposable. Furthermore, an invariant,

decomposable divergence is an f -divergence, unless it is over P (x) for x ∈ X where |X | = 1.

Therefore, except in the case |X | = 1, f -divergences are exactly the class of invariant,

decomposable divergences.

3.4 Fisher Information as a Riemannian Metric

In this section we show that a Riemannian metric can be derived from a divergence. By

doing so, we can interpret a parameter space of probability distributions as a Riemannian

manifold. For an explicit example, we show the entire derivation for the KL-divergence,

where the metric obtained is the Fisher information matrix. However, due to a theorem

by Chentsov [11, 16], every f -divergence gives the Fisher information matrix up to a scalar

factor, making it the only metric invariant under sufficient statistics. In this section, we use

∂i to denote ∂
∂θi

where θ = (θ1, ..., θn)T is a vector of parameters.

Definition 3.20. Given a parametric family of probability distributions, for a particular

value of the parameter θ = (θ1, ..., θn)T , the Fisher information matrix of P (x; θ) is (gij)

where:

gij =

∫
X
P (x; θ)(∂i logP (x; θ))(∂j logP (x; θ))dx.

We will denote this matrix by G(θ).

Theorem 3.21. The Fisher information matrix G(θ) is always symmetric and positive

semidefinite.
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Proof. It is clear from the definition that gij = gji. Now let ξ = (ξ1, ..., ξn) ∈ Rn. Then:

ξTG(θ)ξ =
∑
i,j

ξigijξj

=
∑
i,j

ξi

[∫
X
P (x; θ)(∂i logP (x; θ))(∂j logP (x; θ))dx

]
ξj

=
∑
i,j

∫
X
P (x; θ)(ξi∂i logP (x; θ))(ξj∂j logP (x; θ))dx

=

∫
X

∑
i,j

P (x; θ)(ξi∂i logP (x; θ))(ξj∂j logP (x; θ))dx

=

∫
X
P (x; θ)

(∑
i

ξi∂i logP (x; θ)

)(∑
j

ξj∂j logP (x; θ)

)
dx

=

∫
X
P (x; θ)

(∑
i

ξi∂i logP (x; θ)

)2

dx

≥ 0.

So G(θ) is positive semidefinite.

In order for the Fisher information matrix to be a true Riemannian metric, it must be

positive definite. We can see from the previous theorem that this may fail, for example, if

the support of P (x; θ) is strictly contained in the domain. That is, if there exist random

events that have a probability of zero. There are many papers in information geometry that

study manifolds where the requirements of the Riemannian metric are weakened [44, 46, 29],

for example, not requiring the metric to positive definite. On the other hand, many standard

distribution families have a positive definite Fisher information matrix, so for the remainder

of this paper, we will assume positive definiteness.

Now we show the relationship between the Fisher information matrix and the KL-divergence.

The following theorem depends on P (x; θ) meeting certain regularity conditions which guar-

antee that:
∂

∂θi

∫
X
P (x; θ) =

∫
X

∂

∂θi
P (x; θ).

An overview of these conditions is given in [26]. We assume this holds in the proof of the

theorem.

Theorem 3.22. Let Pθ = P (x; θ) and Pθ+δθ = P (x; θ + δθ). The second order Taylor

expansion of KL(Pθ ‖ Pθ+δθ) yields the quadratic form 1
2
δθTG(θ)δθ, where G(θ) is the Fisher

information matrix.
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Proof. The Taylor expansion gives:

KL(Pθ ‖ Pθ+δθ) =

∫
X
Pθ log

(
Pθ
Pθ+δθ

)
dx

=

∫
X
Pθ logPθdx−

∫
X
Pθ logPθ+δθdx

≈
∫
X
Pθ logPθdx−

∫
X
Pθ

(
logPθ +

(
∇Pθ
Pθ

)T
δθ +

1

2
δθT (∇2 logPθ)δθ

)
dx

=

(
−
∫
X
∇Pθdx

)T
δθ − 1

2
δθT

(∫
X
Pθ(∇2 logPθ)dx

)
δθ

=

(
−∇

∫
X
Pθdx

)T
δθ − 1

2
δθT

(∫
X
Pθ(∇2 logPθ)dx

)
δθ

= (−∇1)T δθ − 1

2
δθT

(∫
X
Pθ(∇2 logPθ)dx

)
δθ

= −1

2
δθT

(∫
X
Pθ(∇2 logPθ)dx

)
δθ.

Then we can compute the Hessian of logPθ by applying the quotient rule:

∂i∂j logPθ = ∂i

(
∂jPθ
Pθ

)
=

(∂i∂jPθ)Pθ − (∂iPθ)(∂jPθ)

PθPθ

=
∂i∂jPθ
Pθ

− (∂i logPθ)(∂j logPθ).

In matrix form, this is:

∇2 logPθ =
∇2Pθ
Pθ
− (∇ logPθ)(∇ logPθ)

T .
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Therefore:

−1

2
δθT

(∫
X
Pθ(∇2 logPθ)dx

)
δθ = −1

2
δθT

(∫
X
∇2Pθ − Pθ(∇ logPθ)(∇ logPθ)

Tdx

)
δθ

= −1

2
δθT

(∫
X
∇2Pθdx−

∫
X
Pθ(∇ logPθ)(∇ logPθ)

Tdx

)
δθ

= −1

2
δθT

(
∇2

∫
X
Pθdx−

∫
X
Pθ(∇ logPθ)(∇ logPθ)

Tdx

)
δθ

= −1

2
δθT

(
∇21−

∫
X
Pθ(∇ logPθ)(∇ logPθ)

Tdx

)
δθ

=
1

2
δθT

(∫
X
Pθ(∇ logPθ)(∇ logPθ)

Tdx

)
δθ

=
1

2
δθTG(θ)δθ.

In light of this, we can interpret the space {P (x; θ) | θ ∈ Rn} as a Riemannian manifold.

This manifold is covered by a single coordinate patch, so we treat the manifold as Rn. Since

the points on the manifold are associated with probability distributions, we call the manifold

a statistical manifold.

By starting with a different divergence function, one could try to obtain a Riemannian

manifold with a different metric, but when the divergence is an f -divergence, the metric

obtained is always the Fisher information matrix (up to re-scaling). Chentsov first proved

this in the framework of category theory.

Theorem 3.23. (Chentsov, [11]) The Fisher information matrix is the only invariant Rie-

mannian metric up to a scalar factor, in the sense that it is induced by an invariant diver-

gence.

3.5 Bregman Divergences and Dually Flat Structures

The class of f -divergences allow us to interpret the parameter space of a probability distri-

bution as a Riemannian manifold, where the Riemannian metric has the desirable property

that it is invariant under transformations of the random variable. This does not tell us

much about the affine connections associated with the manifold. In this section we explore

another class of divergences known as Bregman divergences, which are in bijection with

so-called dually flat structures.

Definition 3.24. Let {P (x; θ) | θ ∈ Rn} be a family of probability distributions. Let
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Pθ = P (x; θ) and Pθ′ = P (x; θ′). A Bregman divergence is a divergence of the form:

Dψ(Pθ ‖ Pθ′) = ψ(θ)− ψ(θ′)−∇ψ(θ′) · (θ − θ′),

where ψ : Rn → R is a strictly convex, differentiable function.

Theorem 3.25. A Bregman divergence is a divergence.

Proof. The supporting hyperplane of ψ at θ′ is given by:

f(θ) = ψ(θ′) +∇ψ(θ′) · (θ − θ′).

Therefore, the Bregman divergence is the difference between ψ(θ) and the hyperplane sup-

porting ψ at θ′, evaluated at θ. By convexity of ψ, Dψ(Pθ ‖ Pθ′) ≥ 0, and by strictness,

Dψ(Pθ ‖ Pθ′) = 0 if and only if θ = θ′.

However, Bregman divergences are not symmetric in general.

Example 3.26. Let θ be a single parameter (θ ∈ R) and ψ(θ) = eθ. Then ψ′(θ) = eθ. If we

consider θ = 0 and θ′ = 1, we have:

Dψ(Pθ ‖ Pθ′) = ψ(0)− ψ(1)− ψ′(1)(0− 1) = 1,

and:

Dψ(Pθ′ ‖ Pθ) = ψ(1)− ψ(0)− ψ′(0)(1− 0) = e− 2.

Therefore, the Bregman divergence given by ψ is not symmetric.

Since the function ψ(θ) is strictly convex, its Hessian is positive semi-definite. Positive

definiteness is not guaranteed, since for example, if θ ∈ R, then ψ(θ) = θ4 is strictly convex,

but ψ′′(0) = 0. If the Hessian is positive definite, a Bregman divergence induces a Riemannian

metric, where gij at the point θ is given by:

gθ(∂i, ∂j) =
∂2

∂θi∂θj

∣∣∣∣
θ′=θ

Dψ(Pθ ‖ Pθ′).

Furthermore, a Bregman divergence induces a pair of flat, dual affine connections [2], where

the Christoffel symbols are given by:

Γkij(θ) = − ∂3

∂θi∂θj∂θ′k

∣∣∣∣
θ′=θ

Dψ(Pθ ‖ Pθ′)

(Γ∗)kij(θ) = − ∂3

∂θi∂θj∂θ′k

∣∣∣∣
θ′=θ

D∗ψ(Pθ ‖ Pθ′),
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where

D∗ψ(Pθ ‖ Pθ′) = Dψ(Pθ′ ‖ Pθ)

The notation D∗ is called the dual divergence.

Now suppose we are given a statistical manifold (M, g), with a flat affine connection ∇.

By Proposition 2.1 in [29], the dual affine connection ∇∗ must also be flat. The quadruple

(M, g,∇,∇∗) is called a dually flat structure. We have the following remarkable theorem.

Theorem 3.27. (Proposition 3.1 [29]) Let θ = (θ1, ..., θn) be coordinates with respect to a

parallel frame (that is, the Christoffel symbols of ∇ vanish) and let η = (η1, ..., ηn) be the

dual coordinates for which the Christoffel symbols of the dual affine connection ∇∗ vanish.

Then there exist functions ψ and φ on M such that:

∂ψ

∂θi
= ηi,

∂φ

∂ηi
= θi,

and:

ψ(P ) + φ(P )−
∑
i

θi(P )ηi(P ) = 0,

for all P ∈M .

From this pair of functions, one can obtain what is called the canonical divergence,

with respect to the dually flat structure (M, g,∇,∇∗). For P,Q ∈M , it is defined by:

D(P ‖ Q) = ψ(P ) + φ(Q)−
∑
i

θi(P )ηi(Q).

Theorem 3.28. Let θ = (θ1, ..., θn) and η = (η1, ..., ηn) be the dual coordinates associated

with the dual affine connections of a dually flat structure (M, g,∇,∇∗). Let ψ and φ be given

by the previous theorem. The canonical divergence of (M, g,∇,∇∗) is a Bregman divergence,

associated with the strictly convex function ψ.

Proof. Let P,Q ∈M . By the previous theorem:

ψ(Q) + φ(Q)−
∑
i

θi(Q)ηi(Q) = 0.

Rearranging this, we get:

−ψ(Q) = φ(Q)−
∑
i

θi(Q)ηi(Q).
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If we substitute this into the expression for the Bregman divergence given by ψ, we see:

Dψ(P ‖ Q) = ψ(P )− ψ(Q)−∇ψ(Q) · (θ(P )− θ(Q))

= ψ(P ) + φ(Q)−

(∑
i

θi(Q)ηi(Q)

)
−

(∑
i

∂ψ

∂θi
(Q)(θi(P )− θi(Q))

)

= ψ(P ) + φ(Q)−

(∑
i

θi(Q)ηi(Q)

)
−

(∑
i

ηi(Q)(θi(P )− θi(Q))

)
= ψ(P ) + φ(Q)−

∑
i

θi(P )ηi(Q).

So the canonical divergence of (M, g,∇,∇∗) is the Bregman divergence Dψ(P ‖ Q).

Therefore, there is a one-to-one correspondence between Bregman divergences and dually

flat structures. This duality has been studied extensively in information geometry [29, 41,

4]. Finally, we note a key result about the KL-divergence.

Theorem 3.29. (Amari, [3]) The KL-divergence and its dual are the only divergences that

lie in the intersection of the f -divergence and Bregman divergence classes.

The main goal of this chapter was to motivate the use of the KL-divergence and the Fisher

information matrix to induce a Riemannian structure on parameter spaces of probability

distributions. In the next chapter, we show how information geometry can be applied to

machine learning.

4 Applications to Machine Learning

4.1 Background on Neural Networks

In this chapter we see more specific applications of Riemannian geometry and information

geometry in machine learning. The online books [18] and [30] are excellent resources on

introductory machine learning topics. In this section, we introduce the concept of a neural

network.

In general, an artificial neural network (ANN) is a function with a large number of pa-

rameters, mapping input vectors to output vectors. Their use has been studied extensively

in the areas of regression, computer vision, and speech processing [8, 18].
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The building block of a neural network is the neuron, which is loosely related to a

biological neuron. It consists of several components:

• Input: x = (x1, ..., xn) ∈ Rn

• Weight: w = (w1, ..., wn) ∈ Rn

• Bias: b ∈ R

• Activation function: f : R→ R

A neuron maps the input vector x to a real-valued output y = f(w · x+ b). This is typically

visualized as:

x1

x2

...

xn

b

w1

w2

wn

y = f(w · x+ b)

Figure 9: A single neuron.

Intuitively, one can think of the input x as a stimulus. If the input to the neural network

is an image, then each xi might be the intensity of a particular pixel. The vector w amplifies,

dampens, or negates specific inputs, based on their importance to this particular neuron.

The activation determines how the neuron “fires”, in relation to its weighted input. Some

typical choices of f are the step-function, the sigmoid function, and the rectified linear

unit (ReLU):

f(a) =

0 a ≤ 0

1 a > 0
f(a) =

1

1 + e−a
f(a) =

0 a ≤ 0

a a > 0
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Figure 10: Various activation functions used in neurons.

The bias effectively translates the graphs of these functions horizontally, requiring the

summed input to be lower or higher for the neuron to “fire”.

The simplest kind of ANN is called a multilayer perceptron. It consists of several

layers of neurons such that the output of a neuron in one layer is used as input to neurons

in the next layer. Below is a figure showing a multilayer perceptron, where each unlabelled

circle is a neuron. Every arrow has a weight parameter associated with it and every neuron

has its own bias parameter.

x1

x2

x3

y1

y2

Figure 11: A multilayer perceptron. Each unlabelled node is a neuron, with its own bias parameter, and
each arrow has a weight associated with it.

The weights and biases are the parameters that can be adjusted to change how the

multilayer perceptron functions. Features such as the number of layers and the number of

neurons in each layer are referred to as the architecture of the ANN, and are usually fixed
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before optimizing the parameters.

A large part of machine learning research is studying how to adjust the parameters of an

ANN to make it perform well at a certain task. These processes of learning the parameters

are generally separated into two major categories: supervised learning and unsupervised

learning. In supervised learning, we use a sample of desired input-output pairs, called a

training set. An example of this is an ANN that learns to recognize stop signs in images, by

using a dataset of images that have stop signs and a dataset of images that do not. In this

case, we define a way to measure the performance of the ANN based on how close its outputs

are to the expected outputs in the training set. Unsupervised learning covers techniques that

do not use a training set. For example, data compression algorithms could use an ANN, by

learning to transform an input x into a lower-dimensional representation such that little to

no information about x is lost.

We will focus on supervised learning in this paper. A well-known dataset used to bench-

mark learning algorithms is the MNIST dataset. It has a training set with 60,000 images

of handwritten digits, each 28 pixels in width and 28 pixels in height. It also has a test set

of 10,000 images, which are used to evaluate the overall performance of the ANN after the

parameters are adjusted, to see how well the network is able to classify images it has never

seen before. The dataset was compiled by Yann LeCun, Corinna Cortes, and Christopher

Burges, and it was used to train ANNs to recognize handwritten digits in the seminal paper

[25].

Now we present an overview of how supervised learning works, using the MNIST dataset

to optimize the parameters of an ANN. To begin, we fix the architecture of the network

and initialize the parameters. Since the images are 28x28 in size, the input will be a 784-

dimensional vector. The output will be a 10-dimensional vector such that the entries are

between 0 and 1 and add to 1. We can force this by taking the exponentiation of the output

vector component-wise and normalizing it (this is referred to as a softmax layer). The ith

entry of the vector can be thought of as the probability that the ANN thinks the input is

the digit i − 1. For example, if the input is an image of a 8, the expected output will be

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)T .
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Figure 12: An example of a handwritten digit from the MNIST dataset. To input the image to an ANN,
the array of pixels is converted into a vector, where the entries are values between 0 and 1, based on the
intensity of the pixel.

We also define a real-valued loss function, which measures the overall error of the

network’s classifications of the training set, as a function of the parameters. The most

important feature of a loss function is that the lowest possible value is achieved exactly where

the ANN’s output matches the expected output. Mean squared error (MSE) is commonly

used. We denote the vector containing all the weight and bias parameters by θ, the input

by x = (x1, ..., xn), the expected output by y = (y1, ..., ym), and the output of the ANN by

y = (y1, ..., ym). The MSE associated with the training example (x, y) is:

C(θ, x, y) =
1

2

∑
i

(yi − yi)2.

The MSE associated with a subset of the training set S = {(x1, y1), ..., (xk, yk)} is the average

of the MSEs for each pair:

C(θ) =

∑
iC(θ, xi, yi)

k
.

This function satisfies the property that C(θ) = 0 if and only if the ANN produces the

expected output on every training example.

To learn the parameters of the ANN, the gradient descent algorithm is typically em-

ployed to minimize the loss function on the training set. Gradient descent is a first-order

optimization algorithm. To use it, we estimate ∇C(θ) by estimating the partial derivatives

of C(θ) with respect to each weight and bias parameter. Then we simply update θ to θ′ by

the rule:

θ′ = θ − η ∇C(θ)

‖∇C(θ)‖2
,

where the scalar η > 0 is referred to as the learning rate and ‖·‖2 is the Euclidean norm.

By Taylor’s theorem, ∇C(θ) is in the direction of steepest ascent of the linearization of C at

θ. By adjusting the parameters by a small negative amount in the direction of the gradient,

we expect the error to decrease. The choice of η is important: if it is small, improvements
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will be small, but the linearization of C becomes less trustworthy further away from θ. After

many iterations, we expect (and we may observe in practice) that the value of the loss

function will tend toward a local minimum, since every step aims to reduce the value of the

loss function.

The above approach is somewhat effective, but there are several problems with it that

have been addressed in machine learning research. The biggest issue is that when the network

has a large number of parameters, estimating the partial derivatives can be time-inefficient.

The näıve way to estimate one partial derivative is to use a finite difference method, which

involves computing the difference between the error of the network and the error when the

parameter has been perturbed by a small amount. To estimate all the parameters would

require passing inputs through the network at least the same number of times as there are

parameters in the network. The back-propagation algorithm [37, 15] was conceived as

a way to compute ∇C(θ) more efficiently, using only one forward pass of the input and one

backward pass that determines how much contribution each parameter had in the error.

Another issue is that gradient descent tends toward a local minimum, where ideally we

want the global minimum. This is highly dependent on the how the network was initialized.

We can modify the gradient descent algorithm to improve this: by adding a momentum

term to the update [37] or using an adaptive learning rate [21]. These methods also tend to

have faster convergence compared to unmodified gradient descent. In practice, convergence

speed is also improved by estimating the cost of the entire training set by only using a

fraction of the set per update. The sample of the training data used for an update is called a

mini-batch. Many studies have shown that performing an update after every example (i.e.

using a mini-batch size of 1) is effective [9]. When this technique is used, gradient descent

is referred to as stochastic gradient descent.

Finally, there is the issue of overfitting. We are measuring the performance of the ANN

based on how well it can classify data in the training set. However, the real goal is to create

an ANN that can classify data well, even if it has never been seen before. Since ANNs have

a large number of parameters, they are prone to overfitting: that is, they have low error on

training data, but high error on data outside of the training set. A study showed that ANNs

with a large number of neurons trained using back-propagation yielded similar results to

ANNs with less neurons [10]. A common way of reducing overfitting is to use a validation

set and early-stopping [10]. At the beginning of training, a portion of the training data

is set aside as a validation set, which is never used to update the parameters. Periodically

during training, the ANNs performance is measured on the validation set. When the error

on validation set starts to increase, it indicates that overfitting is occurring and that the
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training should stop. Overfitting is also reduced by artificially augmenting the training data

with random distortions, and by a technique called Dropout, where inputs to individual

neurons are randomly zeroed out during the training process [22].

4.2 The Natural Gradient

In the previous section, we saw that the parameters of an ANN are optimized to minimize a

loss function C(θ) using the gradient descent algorithm. When updates are performed after

each training example, it is referred to as stochastic gradient descent. Let us only consider

computing the loss with respect to a single training input-output example (x, y).

Another way of thinking of an update in the gradient descent algorithm is that the

learning rate implicitly defines an optimization sub-problem in the region around the current

parameter θ0:

min
θ
C(θ)

s.t. ‖θ − θ0‖2 = η

θ ∈ Rm.

Gradient descent solves a simplified version of this sub-problem, by using a first-order ap-

proximation of C(θ) around θ0 (by Taylor’s theorem). This is the linearized sub-problem:

min
θ

[C(θ0) +∇C(θ0)
T (θ − θ0)]

s.t. ‖θ − θ0‖2 = η

θ ∈ Rm.

It is clear that the solution to the linearized sub-problem is θ = θ0 − η ∇C(θ0)
‖∇C(θ0)‖2 .

However, it is not clear whether or not the constraint ‖θ − θ0‖2 = η is the best search

space for optimizing the ANN overall. Let us denote the output vector of the ANN with

parameters θ by yθ. As we have seen in previous sections, if yθ is a probability distribution,

then there are more natural ways of measuring the distance between two distributions yθ and

yθ′ than simply using the Euclidean distance of their parameters θ and θ′. Let us consider

the parameter space of the ANN as defining a global coordinate system on a Riemannian

manifold (M, g), where M = {yθ | θ ∈ Rn} and g is given by the Fisher information

matrix G(θ) at each point. We can rewrite the linearized optimization sub-problem above
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to incorporate the Riemannian metric.

min
θ

[C(θ0) +∇C(θ0)
T (θ − θ0)]

s.t. ‖yθ − yθ0‖g = η

θ ∈ Rm.

To solve this sub-problem, we have the following theorem, which is generally credited to

Amari in machine learning literature:

Theorem 4.1 (Amari, [5]). The direction of steepest descent of C(θ0) over a Riemannian

manifold (M, g) with global coordinates θ = (θ1, ..., θm) is −G(θ0)
−1∇C(θ0).

Proof. Let x = θ − θ0 and let η = 1. The linearized sub-problem over the Riemannian

manifold can then be written as:

min
x

[C(θ0) +∇C(θ0)
Tx]

s.t. ‖yx‖2g = 1

x ∈ Rm.

The squared norm is to simplify calculations. By the method of Lagrange multipliers, this

is equivalent to solving the system for i = 1, ...,m:

0 =
∂

∂xi

(
C(θ0) +∇C(θ0)

Tx− λ(xTG(θ0)x− 1)
)

0 =
∂

∂xi
C(θ0) +

∂

∂xi
∇C(θ0)

Tx− ∂

∂xi
λ(xTG(θ0)x− 1).

The first term vanishes. For the second term, we have:

∂

∂xi
∇C(θ0)

Tx =
∂

∂xi

∑
j

∇C(θ0)jxj

= ∇C(θ0)j.

For the third term, we get:

∂

∂xi
λ(xTG(θ0)x− 1) = λ

∂

∂xi

(∑
i,j

G(θ0)jkxjxk

)
.

When neither j nor k is equal to i, the derivative under the sum is 0. When only j = i,

the derivative is G(θ0)ikxk, and k = i gives G(θ0)jixj. When j = k = i, we get 2G(θ0)iixi.
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Therefore, using the fact that G(θ0)jk = G(θ0)kj:

λ
∂

∂xi

(∑
i,j

G(θ0)jkxjxk

)
= 2λG(θ0)x.

So the system given by the Lagrange multipliers is equivalent to:

0 = ∇C(θ0)− 2λG(θ0)x.

If λ = 0, then θ0 is already a critical point, since 0 = ∇C(θ0). Otherwise, solving for x gives:

x =
1

2λ
G(θ0)

−1∇C(θ0).

Since G(θ) is positive definite, G(θ)−1 is also positive definite. Therefore:

∇C(θ0) ·G(θ0)
−1∇C(θ0) > 0,

so x is the solution that maximizes the objective function, making the direction of steepest

descent −G(θ0)
−1∇C(θ0).

The vector G(θ0)
−1∇C(θ0) is referred to in machine learning as the natural gradient.

The above theorem suggests that the update rule used in gradient descent:

θ′ = θ − η ∇C(θ)

‖∇C(θ)‖2
,

should be replaced with:

θ′ = θ − η G(θ)−1∇C(θ)

‖G(θ)−1∇C(θ)‖g
.

This method was used by Amari in [6], for the study of blind separation of mixed signals,

but the theory of Riemannian metrics in statistical settings already existed well before this

(see [1] and [34]). Computing the inverse of the Fisher information matrix can be costly, but

there are many ways of approximating it [38]. In a statistical framework, this algorithm was

shown to be theoretically more efficient for estimating parameters than stochastic gradient

descent [5].

4.3 Batch Normalization

When ANNs have many layers, they are difficult to train. By changing the parameters on

neurons in the early layers, the possible inputs that are seen in later layers are also changed.
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This effect is sometimes referred to as internal covariate shift. This effect is especially a

problem when the neurons have activation functions that map R to a bounded interval (such

a function is called a saturating non-linearity), as in the case of the sigmoid function [19,

42]. A method known as batch normalization was conceived by Ioffe and Szegedy [19] to

reduce the effect of internal covariate shift. This stabilizes the learning process, allowing for

larger learning rates to be used.

We now give an overview of batch normalization. In order to stabilize the distributions

of inputs to a layer, the real-valued inputs to the activation functions can be individually

normalized over the training set. In a typical ANN, for a neuron in any given layer, we take

the dot product of the input vector x from the previous layer with the weight vector of the

neuron w and add a bias scalar b, before using it as input to an activation function f (see

Figure 9).

We will focus on a single neuron in the ANN. The exact value of w · x+ b will depend on

the initial input to the ANN. To normalize this value, we would want to compute the mean

and standard deviation of this expression over the entire training set, but doing so is time-

consuming. Instead, we estimate the mean and standard deviation by using a mini-batch as

a sample. Also, note that the bias parameter can effectively be removed, since normalization

cancels the addition of the bias.

Suppose we have a mini-batch of size k. Let B = {x1, ..., xk} be the set of input vectors

to a particular layer over the mini-batch. We also write ai = w · xi to denote the input to

a specific neuron for the ith example in the batch. We compute the mean and standard

deviation of the ai by:

µB =
1

k

k∑
i=1

ai

σB =

√√√√1

k

k∑
i=1

(ai − µB)2.

Then we can normalize the neuron inputs across the mini-batch by substituting each ai with:

âi =
ai − µB√
σ2
B + ε

where ε is a small positive constant for numerical stability. This is used in practice, but for

theoretical results, we will ignore it.

However, as it is, this will reduce the layers’ ability to transform the input. In order
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to restore the representational power of the ANN, we add additional learnable parameters,

γ ∈ R and β ∈ R, which can scale and shift the normalized neuron input âi. We define the

batch normalization transformation by the function BN : R→ R where:

BN(ai) = γâi + β.

To summarize, the output from a neuron in a typical ANN is:

f(w · x+ b),

but batch normalization replaces this with:

f(BN(w · x)).

The two parameters, γ and β, are added to every neuron to which we wish to apply

batch normalization. It should be noted that the effect of batch normalization, given a

particular input, depends on the other examples in the mini-batch. Therefore, once the

ANN parameters have been tuned and the training set is finished being used, the population

mean and standard deviation over the entire training set may be computed, in order for the

ANN’s output to be deterministic.

An important property of applying batch normalization to a neuron is that the weights

to that neuron become invariant to scaling by a positive constant.

Theorem 4.2. For a fixed mini-batch, denote by B = {x1, ..., xn} the input vectors to a

particular layer of an ANN. The function BN described above satisfies the property:

BN(w · xi) = BN((αw) · xi),

for all α > 0.
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Proof. As above, let:

ai = w · xi

µB =
1

k

k∑
i=1

ai

σB =

√√√√1

k

k∑
i=1

(ai − µB)2

âi =
ai − µB
σB

.

Now we substitute w with αw for some α > 0. The formulas above then become:

(αw) · xi = α(w · xi)

= αai

1

k

k∑
i=1

αai = α

(
1

k

k∑
i=1

ai

)
= αµB

√√√√1

k

k∑
i=1

(αai − αµB)2 =

√√√√α2

(
1

k

k∑
i=1

(ai − µB)2

)

= α

√√√√1

k

k∑
i=1

(ai − µB)2

= ασB

αai − αµB
ασB

=
(α
α

)(ai − µB
σB

)
= âi.

Therefore, the normalized input to the neuron is unchanged.

Information geometry can be applied to understand how much a gradient update will

change the output distribution of the ANN. In the case of batch normalization, it becomes

even more obvious that distances in the parameter space do not correspond with the mag-
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nitude of change in the output, since re-scaling the weights does not change the output at

all. We can use the Riemannian metric derived in Section 3.4. If we compute the Fisher

information matrix G(θ) with respect to the neuron model, then a change in the parameter

vector by δθ will result in a change in the output distribution by 1
2
δθTG(θ)δθ. For an ANN

with multiple neurons and layers, the impact of changing the parameters can be analyzed

by using a block-diagonal approximation of the Fisher information matrix, where each block

corresponds to the parameters of a single neuron. A detailed overview of this analysis can

be found in [7].

4.4 Momentum-based Optimization

A large drawback of gradient descent is that when optimizing for non-convex loss functions,

we can get stuck in a poor local minimum. Additionally, there are versions of gradient

descent that do not use a normalized gradient in the update rule. That is, for a parameter

vector θ ∈ Rn, a learning rate η ∈ R, and a loss function C : Rn → R, the update rule is:

θ′ = θ − η∇C(θ)

so that optimization is sped up in areas where C is steep (that is, ∇C is large). We expect

improvements to slow near local minima, as the algorithm tends toward a solution, but this

also results in slow optimization around other critical points, including saddle points and

local maxima, since the gradient is close to 0.

These problems are partly caused by the fact that the direction of the gradient update

can change instantaneously. To deal with these challenges, it is useful to incorporate some

form of momentum into the gradient update rule, to avoid the optimization from slowing

down when the recent changes were large. Intuitively, it is similar to how a ball gains speed

rolling down a hill and is able to climb back up over small bumps.

We now outline gradient descent with momentum, which achieves a faster, more stable

convergence than the update rule above [36]. It involves keeping track of a momentum vector

v ∈ Rn, and selecting a momentum coefficient α ∈ R before training begins. At each step,

the momentum vector is updated by:

v′ = αv + η∇C(θ).

A typical value for α is 0.9. The vector of parameters is then updated by the rule:

θ′ = θ − v′.
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Recall that for α > 0, BN((αw) ·x) = BN(w ·x). In this context, the problem of optimiz-

ing the weight parameters over Rn can be rephrased as a constrained optimization problem,

where the vector of weights is required to be normalized. However, many constrained opti-

mization problems in Rn can be thought of as unconstrained optimization problems over a

Riemannian manifold embedded in Rn [32].

Cho and Lee [12] showed that neurons with n weight parameters and batch normalization

can be identified with the set of orthonormal vectors in Rn (the Stiefel manifold V(1, n)), or

alternatively, they can (almost) be identified with the set of 1-dimensional subspaces of Rn

(the Grassmannian manifold G(1, n)). The issue with the second identification is that batch

normalization is not invariant under negative scalar multiplication:

BN((−αw) · x) = −BN(w · x).

However, this is generally not a problem, if the gradient updates never allow the weight

vector to change by more than an angle of 90o.

Therefore, optimizing the weights of a neuron with batch normalization can be phrased

as an unconstrained problem over G(1, n):

minC(p)

s.t. p ∈ G(1, n),

where C : G(1, n)→ R is the restriction of the original loss function C(θ) on Rn. There are

a few changes that need to be made to gradient descent for it to work over a Riemannian

manifold embedded in Rn. First, if the gradient of the loss function C(p) is computed with

respect to the coordinates θ in Rn, it needs to be projected onto the tangent space at the point

p. The gradient update rule also has to be changed, since we would be subtracting a vector

from a point on the manifold. Instead, we follow the geodesic given by the projected gradient

vector in the tangent space. Finally, if we were to use gradient descent with momentum, since

the momentum vector would lie in the tangent space at p, we can use parallel translation to

carry the momentum vector to the new point on G(1, n).

We will now summarize gradient descent with momentum on G(1, n), embedded in Rn.

We denote by θp the coordinates in Rn of a point p ∈ G(1, n). We also use ∇C(θ) to denote

the gradient of C computed with respect the coordinates in Rn. The gradient can be thought

of as lying in TpRn, so we denote the projection from TpRn to TpG(1, n) by π. Given:

• p ∈ G(1, n) the current point
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• v ∈ TpG(1, n) the current momentum vector

• α ∈ R the momentum coefficient

• η ∈ R the learning rate

Then the update rule is as follows:

• h = π(∇C(θ)) project the gradient onto G(1, n)

• d = αv − ηh compute the direction of the update

• p′ = expp(d) use the exponential map to update the current point

• v′ = Ppp′(d) use parallel translation to update the current momentum

In practice, the norm of h can be forced to stay below some threshold, since we do not

want to allow the exponential map to change the angle of the weight vector by more than

90o. Furthermore, the parameters of an ANN with m neurons can be interpreted as lying on

the manifold:

G(1, n1)× · · · × G(1, nm)× Rl.

The Rl component accounts for additional parameters, such as the parameters introduced

by batch normalization. Cho and Lee [12] showed that stochastic gradient descent with mo-

mentum over this Riemannian manifold was able to outperform momentum-based methods

in Euclidean space on the standard ANN architectures at the time.

5 Conclusion

Despite the large amount of theory that has been developed in information geometry, second-

order methods, such as the natural gradient and Newton’s method, are not widely used in

machine learning. The machine learning community is moving toward using larger, deeper

networks, and using rapid optimization methods. There is evidence to show that the num-

ber of gradient updates required to train networks using second-order methods is less than

stochastic gradient descent [17]. However, the gains made by these techniques are out-

weighed by their computational cost [33]. There exists promising work, showing that the

Fisher information matrix can be approximated using a low-rank, block-diagonal matrix

[35], but in order for Fisher information and the natural gradient to be feasible in machine

learning, further work must be done towards approximating these efficiently.
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